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CHAPTER I 

INTRODUCTION 

Spatial variation of turbulence over aircraft is known to strongly 

influence the structural and control design of the aircraft (Houbolt 

1973; Etkin 1972; Bisplinghoff et al. 1957). Techniques for computing 

rolling and pitching moments and other aerodynamic forces, which are 

influenced by spatial turbulence, have been developed theoretically and, 

in general, utilize isotropic homogeneous turbulence (Diederich and 

Drischler 1957; Eichenbaum 1972; Eggleston and Diederich 1956; Houbolt 

1973; Lichtenstein 1978; Kordes and Houbolt 1953; Eichenbaum 1971; 

Houbolt 1972; Pastel, Caruthers, and Frost 1981; Akkari and Frost 1982; 

Diederich 1957). It is well known, however, that the turbulence in the 

atmospheric boundary layer close to the earth's surface, which is 

encountered by an aircraft during approach and takeoff, and turbulence 

associated with thunderstorms and clear-air roll waves is generally not 

isotropic. Additionally, turbulence shed by large buildings near air- 

craft runways can also create relatively large-scale turbulence that has 

been known to affect not only small general aviation and corporate 

aircraft but also the larger commercial airliners (Woodfield 1983). No 

experimental data exist.which can be utilized to verify the current 

theoretical models nor develop new and improved design criteria. 

In general, spatial turbulence statistics have been computed from 

data measured with single towers to heights not exceeding much more than 

100 m. An individual tower, however, provides spatial turbulence infor- 

mation only in the vertical, which is, in general, uninteresting to 
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aircraft design (Davenport 1961; Brooke 1975; Panofsky 1973). Some 

studies have been carried out with tower arrays based on two or three 

towers located at various horizontal separation distances. The data 

normally reported from these studies is the coherence function for 

longitudinal velocities (Panofsky and Mizuno 1975; Panofsky et al. 1974; 

Kristensen and Jensen 1979; Pielke and Panofsky 1970). These towers are 

normally less than 20 to 30 m in height. Due to the fact that turbu- 

lence information is required for aircraft in the terminal region, 

roughly from 500 m to the surface, these data are somewhat limited in 

their application. NASA, therefore, planned and is now carrying out the 

NASA B-57 gust gradient program. This program utilizes a B-57 Canberra 

bomber equipped with velocity measuring probes on both wing tips and at 

the nose. The separation distance between the two wing tip probes is 

approximately 20 m, allowing spatial turbulence of that horizontal 

length scale to be investigated. 

Prior to the initiation of the gust gradient program, a large 

amount of atmospheric boundary layer data had been gathered with the 

NASA/Marshall Space Flight Center (NASA/MSFC) Atmospheric Boundary Layer 

Facility's eight tower array. These data were ideally suited to supple- 

ment the B-57 gust gradient program by providing ground truth data. 

Also the necessary statistical, analytical tool needed for analyzing the 

B-57 data, when it becomes available, can be developed and verified with 

these data. Unfortunately, the purpose of the original study, for which 

the tower array data were gathered, was to investigate the influence of 

a block geometry, simulated buildings,on the atmospheric mean wind 

fields and turbulence. Thus,the data were contaminated by the presence 
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of a solid rectangular body located amongst the towers. Figure 1.1 

illustrates the tower array geometry and the location of the building. 

The details of this arrangement are described in Chapter III. Despite 

the presence of the block building, it is believed that the atmospheric 

data obtained from the towers at the upper levels, i.e., 20 m above the 

surface, and from the towers at the ends of the array, are not appre- 

ciably influenced by the building disturbance. Thus, statistical 

analysis of correlations between measurements at different towers and of 

the auto-correlation at individual towers were expected to be representa- 

tive of undisturbed surface flow. These statistical analyses are pre- 

sented and compared with analytical models in Chapters IV through VIII 

of this study. 

Chapter II reviews the current design techniques for predicting 

aircraft lift, drag, yaw, rolling, and pitching moments due to turbu- 

lence spatially distributed over the aircraft. The purpose of Chapter II 

is to identify some of the necessary and needed statistical correlations 

for aircraft design. It is shown that the two-point spatial correlation 

for velocity or turbulence distribution over the airfoil is of prime 

interest. 

In this study, a distinction is made between a two-point spatial 

correlation and the commonly used term "cross-correlation." The termi- 

nology cross-correlation in this study is reserved for a correlation 

between velocity components in a different direction; for example, 

between the lateral and longitudinal components or the vertical and 

longitudinal components, etc. The terminology "two-point" spatial 

correlation in this study refers to a correlation between velocity 
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components measured at stations separated in space. This can be either 

a two-point cross-correlation where dissimilar velocity components are 

correlated over a spatially separated distance or it can be a two-point 

auto-correlation where the same velocity components are correlated over 

a spatial distance. Only results for two-point auto-correlations are 

presented. A single-point spatial correlation is a correlation between 

velocity fluctuations measured at the same point but possibly separated 

in time. Note that a two-point spatial correlation can also be separated 

in time (i.e., time dependent or lagged in time). Chapter VI describes 

in more detail the terminology for correlations and spectra used in this 

study. 

Three analytical models of turbulence spectra, which are commonly 

used in the literature, are frequently referred to in this study; 

these are the von Karman, Dryden , and Kaimal spectra (mathematical 

expressions are given in Chapter VII). Although reference is made to 

these spectra throughout the earlier chapters, a more thorough discus- 

sion of them is given in Chapters VI and VII where comparison is made 

with the experimental data. The spectra models of von Karman and Dryden 

rely heavily upon the choice of length scale. Throughout this study the 

analytical predictions were found to be extremely sensitive to length 

scale in obtaining agreement with experimental results. Chapter V of 

this study addresses four different methods of computing length scales. 

All four different length scales are used sequentially in each analyt- 



both models are generally assumed valid only for isotropic homogeneous 

turbulence. However, the Kaimal spectra does not predict the experi- 

mental results well either. Since the Kaimal model is in effect an 

empirical correlation of data gathered during the' Kansas experiment from 

towers of similar height to those used in this study, this poor agree- 

ment is surprising. It should be noted, however, as discussed in Chapter 

111, that the terrain features surrounding the tower array used i'n 

the present study are not homogeneous over a large fetch. 

Finally, Chapter VIII of this study addresses the two-point spatial 

spectra and the coherence function. Comparison of the two-point spectra 

with a theoretical model by Houbolt and Sen (1972) and the coherence 

with semi-empirical models are made in this chapter. In general, the 

experimental data do not agree extremely well with the theoretical 

results, indicating that additional work is required to develop correla- 

tions of the experimental data which can be used for aircraft design. 

Finally, the appendices of this study contain the time histories of 

all anemometer readings, spectral analysis of all longitudinal compo- 

nents, additional correlations, and probability density functions which 

are too numerous to put in the text of the report. 
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CHAPTER II 

AIRCRAFT DESIGN REQUIREMENTS RELATIVE 

TO SPATIAL TURBULENCE 

This chapter discusses various aspects of aircraft design associated 

with spatial variations in turbulence. Gusts affect the control of atti- 

tude, altitude, and power setting of the aircraft and the structural 

integrity, such as wing bending, fatigue, etc. 

Initially, the design of aircraft for gust encounters was based on 

the concept of a single gust model or gust load factor. The gust load 

factor is computed as follows. When a sharp edge gust is encountered, 

the angle of attack, a, changes by ACX = KU/V where U is the gust 

velocity, K is the gust reduction factor normally computed numerically, 

and V is the indicated airspeed assumed constant through the gusts. If 

the lift coefficient CL is given by a,", then the change in CL is ACL = 

alAa = KUa,/V. The load factor is defined as An = nCL/CL = pKUVSa,/2W 

where W is the gross weight, S is the design effective wing area, and p 

is the density of air. Rather than a sharp-edged gust, the shape of the 

gust velocity was later taken as (1 - cos TV-t/a) where R is the gust 

gradient distance. Experimental measurements of vertical accelerations 

coupled with this model were used to calculate an effective gust magni- 

tude for computing design loads. 

In recent years, the design of aircraft for gust penetration has 

used spectral concepts. Given the spectrum for the longitudinal fluc- 

tuating wind speed component, 4, (f), of atmospheric turbulence (where 

f is the cyclic frequency) and miltiplying by the square of the absolute 
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value of the aircraft frequency response function, lH(f)12, yields the 

aircraft response spectrum, $An(f), i.e., 

@A,tf) = IH(f)12@w (f) 
X 

(2.1) 

This model assumes homogeneous turbulence and the aircraft is entirely 

engulfed in the velocity fluctuations (i.e., the aircraft is a point 

mass). In general, near the ground, the atmospheric turbulence is not 

homogeneous and the typical spatial scale is such that the turbulence 

gusts vary over the airplane. Therefore, the spatial structure of the 

turbulence must be known. 

To analyze the effects of gust variations across the airfoil, the 

wing of the aircraft is normally divided into segments. Each segment is 

considered to "see" locally homogeneous turbulence. The response spec- 

trum of the aircraft then becomes 

$An(f) = ~11V)IHl(f)12 + +22(f)lH2(f)12 + -0. 

+ 2Reb12(f)H$f)H2(f) + $13HQ(f)H3(f) + l 

+ $23(f)H;(f)H3(f) + l -- 1 (2.2) 

where +An(f) is the spectrum of the n response of the aircraft; An can be 

a bending moment, a displacement, etc. 

+ii(f) is the auto-spectrum of gusts at segment i. 

9ij(f) is the two-point spatial spectrum between gusts at 

segment i and segment j. 

Hi(f) is the frequency response function for the parameter 

An due to a unit sinusoidal gust acting on segment i. 
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Re denotes the real part of the complex number. 

H?(f) denotes the complex conjugate of Hi(f). 

The need for analytical expressions for spatial spectra over the 

airfoil is apparent from Equation 2.2. However, very little experi- 

mental information on ~ij(f) is available. Therefore, the NASA B-57 

gust gradient program was initiated to measure data from which expres- 

sions for eij(f) can be determined. 

Having established 4*,(f), a number 

derived. For example, integrating under 

. variance 02~ of the quantity An, i.e., 

CT& = 
i 

$An(f)df 
0 

of design parameters can be 

the O*,(f) curve provides the 

(2.3) 

The gust load factor An for design is then given by 

Andesign = PbdbAn (2.4) 

The factor P(An,) is a measure of the probability of exceeding the 

design load factor, And. 

The fatigue strength of an aircraft component can also be investi- 

gated from a known value of the spectrum. The approximate number of 

peaks in An per unit distance travel by the aircraft that exceed a 

specified magnitude, An,, are given by the equations 

An; 

N(An,) = N,e 
-z& 

(2.5) 
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where 

u& = 

and 

No = 

OD 

I 
$,,(f)df 

0 

00 \I/2 

f 
f2+An(f)df 

0 
co 

I 
+An(f)df 

0 / 

(2.6) 

(2.7) 

The value of No represents the average number of times per unit distance 

that the response An crosses the value zero with positive slope. The 

value of N(hn,) represents a needed input to the design of an aircraft 

for fatigue loading. 

To understand how a nonuniform distribution of wind, i.e., gust 

gradients across'the airfoil, enter the analysis of lift and other aero- 

dynamic parameters, the following example analyses are reviewed. 

A. Lift Due to Vertical Wind Speed Fluctuations 

The instantaneous value of the lift due to the normal fluctuating 

component of the wind vector can be written as: 

03 b/2 

Lgb) = 
f f 

h(tl ,yh,D'(t - tl > dWtl (2.8) 

-m -b/2 

The function h(t,y) is the indicial response function which represents 
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the lift generated by the wing due to a unit sinusoidal gust applied at 

time, t, and at position, y, measured along the wing. The parameter b 

is span width, V is the uniform horizontal speed of the aircraft, t is 

time, and wz is the vertical wind velocity fluctuation at position y and 

time t - tl. Note the vertical wind speed wz is assumed to be a function 

of position y on the airfoil and of distance x = v(t - t 1 ) alpng the 

flight path. The latter relationship assumes the validity of Taylor's 

hypothesis. 

For an upswept wing, the function h(tl,y) can be written as the 

product of a function which depends only on time and one which depends 

only on the distance along the span; that is, 

Wl ,y) = $ ht(tl by(y) 

Therefore, Equation 2.8 can be rewritten as 

m b/2 
Lg(t) = 1 ht(tl) ; / hy(yhzCV(t - tl > ,ylWtl 

-03 -bj2 

The lift correlation function can now be written as 

RL(d = 
f I 

ht(tlht(t2)iw w [V(T + tl - t2)ldtldt2 
z z -co -03 

where, considering the nomenclature illustrated in Figure 2.1, 

b (b/2)-n 

icw w (5) = $ 
zz I f 

h,(y)h,(n + y)R, w h-ddydn 
0 -b/2 z z 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

where 
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Figure 2.1. Illustration of coordinate system for either the aircraft 
or the tower array. 
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R w w h-d = 
z z 

w,(x,y)w,(x+s,Y+n) (2.13) 

and 

5 = V(T + t, - t2L rl = Y2 - Yl' Y = Yl (2.14) 

Thus,the spatial correlation of the vertical wind fluctuations enter the 

computation -of the aircraft lift. These correlations can be computed 

from the tower array at NASA/Marshall Space Flight Center as illustrated 

in Figure 2.1. Thus, values of R, w (E,q) for computing lift of an air- 
z z 

foil very near to the earth's surface can be carried out with the tower 

array to provide ground-level information for establishing design 

criteria. 

The power spectrum of the lift can be obtained by calculating the 

Fourier transform of the correlation function that is 

03 

O&f) = RL(-c)emiPnfrdT 

If we define 

b/2)-n 

Ry(17) = ; 1 hy(y)hy(y + n)dY 

-b/2 

then 

b 

Rw w (El = ; 
z z I Ry(n)R, w (m-h 

0 zz 
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After some algebra (see Appendix A), Equation 2.15 reduces to 

OL(f) = P+(f) I”i, w c-0 
z z 

(2.18) 

A 

where +, w (f) is the effective spectrum of the vertical gust defined as 
zz 

i, w (f) = f i RwZwz(E)e-i2rrfS/Vdg 
z z -03 

(2.19) 

It is apparent from Equation 2.17 that the effective spectrum 

i, w (f) is dependent on the aerodynamic characteristics of the airplane 
z z 

through the by(y) function. Thus,the lift spectrum cannot be simply 

computed from knowledge of the wind field spectra and IH( as is 

generally possible for isotropic turbulence and a point mass aircraft 

analysis. 

For axisymmetric or isotropic turbulence, the procedure for com- 

puting $L(f) can be somewhat simplified as follows: 

4 w w h-l> = + 

I 

,-i2afg/VR 

z z 
w w (bdd< 

z z -co 
(2.20) 

and 

$wzwz(fl,f2) = & i i e-i2n(f1F+f2n)‘vRw w (mhbh (2.21) 
-co -05 z z 

Values of R, w (<,n) can be computed from the B-57 data where n is the 
z z 

span width or distance between the wing tip and nose probes and 5 = 

WI - t2). Also, Rw w (s,n) can be computed from the tower data where 
z z 
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n is the separation distance between the towers and 5 = @tl - t2). The 

parameter w is the mean wind speed relative to the ground. 

For axisymmetric or isotropic turbulence 

R w w (E,n) = 
zz 

R, w k> 
zz 

where 

and 9, w (f,n) can then be written 
zz 

4 w w (f,n) = + 1 e-i2rfg/VRw w (/w)ds 
z z -02 z z 

(2.22) 

(2.23) 

In turn, 9, w (fl,f2) becomes a function of a single variable i = 

df; + f$ given b: the expression (see Appendix A) 

tJ wzwz (f) 
2-K 

=v I 
cJ,(2WW, w (dck 

0 z z 

where 

;w w zz 
(+) = ] IHy(fl) 12$w w (&if1 

0 z z 

and Hy(f) is the Fourier transfer of by(y) given by 

b/2 
Hy(f) = ; 

I 
,-iP*fy/V 

hy(W 
-b/2 

(2.24) 

(2.25) 

(2.26) 
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The results of the preceding analysis for axisymmetric or isotropic 

turbulence simplify the computation of the lift spectrum due to vertical 

gusts since R, w (~,n) can be computed simply from R, w (2;) where 5 = 

Js2 + $ is a ZpZtiaTlag. 
zz 

Standard expressions for the correlations 

are then applicable to design analysis. A similar statement can be 
A h 

made about $w w (f) where f = Jf; + f$. 
z z 

B. Lift Due to Longitudinal Wind Speed Fluctuations 

The above results pertain to vertical gusts. However, loading on 

the aircraft arises not only from the vertical wind vector component 

but also from the longitudinal components. The following analysis 

serves to indicate the relative influence of the vertical and longi- 

tudinal gusts. Consider an aircraft flying at a uniform horizontal 

speed which encounters an inclined gust having a vertical component wz 

and a horizontal component wx as shown in Figure 2.2. 

Figure 2.2. Affect of an inclined gust on aircraft lift. 
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The lift is given by 

al L = 2 pA(V t wx)2 a t ,,=t, 
X I 

where 

al = slope of the lift curve 

A= span area of the airfoil 

P = air density 

a = angle of attack 

Before the gust, the lift was equal to the weight, or 

al i = 2 pAV2a 

therefore, dividing Equation 2.27 by w gives 

2; [lt;]2 (1 +&] 

(2.27) 

(2.28) 

(2.29) 

Figure 2.3 compares values of L/i for conditions neglecting wx and 

for conditions including wx. This comparison is based on standard atmo- 

spheric boundary layer theory where it is assumed that aW /aw = 0.77, 

a surface roughness z. = 0.1 m, and a mean wind speed at f0 mXheight of 

-Wi=lOm = 20 m/s and 10 m/s, respectively. The results show that near 

the ground at typical approach speeds of commercial airliners, the 

influence of wx can become significant. Near thunderstorms and other 

severe weather conditions, wx can conceivably dominate this relation- 

ship. Subchapter C reviews the influence of the longitudinal gust on 

lift. 
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The instantaneous value of the lift due to the longitudinal compo- 

nent of turbulence can be written as (see Diederich and Drischler 1957) 

03 b/2 

Lg(t) = 2a 
I I 

h(tl ,y)w,D(t - tl ) hbdtl (2.30) 

-0~ -b/2 

(assumes angle of attack is constant along the span). The lift correla- 

tion function can thus be written as 

RL(r) = 4a2 
I f 

ht(tl)ht(t2)Rw w [V(T + tl - t2)ldtldt2 
xx -00 -co 

where similar to Equations 2.12 and 2.13 

b (b/2)-n 

Tiw w (5) = r;: 
xx f I 

hy(n + y)hy(y)Rw w (c,n)dydn 

0 -b/2 xx 

and 

R w w (ml) = w,(x,Y)w,(x+~~Y+n) 
xx 

(2.31) 

(2.32) 

(2.33) 

For axisymmetric or isotropic turbulence 

R wxwxk~n~ = Rw w (d (2.34) 
xx 

In this case, however, R, w (5) where r; = 462 + n2 is different from the 
xx 

standard vertical correlation for isotropic turbulence given in the 

literature. Figure 2.4 illustrates this difference. The expression for 

R wxwx(~J in terms of R, w (5) and R, w (z;) is 
nn PP 

R wxwx(c) 
n2 

= 52 t lp Rwnwn (5) + 52 :2q2 R, w (5) 
PP 
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Figure 2.4. Illustration of coordinates and wind speed components. 

where R, w (5) and R, w (5) are the conventional longitudinal and 

lateral !uFbulence co!rElations (Frost and Moulden 1977). 

Following a similar approach as for the vertical wind speed, we 

can establish an effective spectrum 

b 

;, w (f) = ; 
nn f 

Ryhhw w (fdh 

0 xx 
(2.37) 

Note, however, that the function $w w (fl,f2) cannot be expressed in 

terms of m as used in Equatikx2.25. The lift spectrum now 

becomes 

$,(w) = 4a21Ht(w)12~W w (f) 
xx 

(2.38) 

For isotropic turbulence, the normal and longitudinal components of 

turbulence are statistically independent and the total lift spectrum due 

to both components can be treated as the sum of the individual spectra. 
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C. Rolling Moment 

A rolling moment occurs if the gust components wx and wz are non- 

uniform in the spanwise direction. The rolling moment due to the longi- 

tudinal component and the vertical component can be derived as follows: 

Q) b/2 
MR (t) = 2a 1 1 h(tT,y) wx[V(t - tl)¶YlYdYdtl 

wX -00 -b/2 
(2.38) 

03 b/2 

MR (t) = 
W I I 

Z -00 -b/2 

The corresponding 

h(tl ,Y) w,[V(t - tl) aWydtl (2.39) 

rolling moment correlations for wx become 

0) 
r 

03 

RM (T) = 4a2 
J f 

ht(tl)ht(t2) iw w CVb + tl - t2)ldtldt2 (2.40) 

wX 
xx -co -co 

where 

b/2 b/2 

Rw w (5) = & 
I f 

hy(ylhy(y2) R, w [V(T + tl - 99 
xx -b/2 -b/2 xx 

(Y2 - yl)Iyly2dyldy2 

and, as before, the atmospheric parameter of interest becomes 

R w w (E,n) = W,(X,Y) w,b%Y+d 
xx 

Similarly 

RM (d = 

wZ 
I I 

ht(tl)ht(t2) i, w i% + tl - t2)ldtldtp 

zz -Co -Cm 

(2.41) 

(2.42) 

(2.43) 
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where 

b/2 b/2 

Rw w (5) = $ 
z z I f 

hy(ylhy(y2) R, w [V(T + tl - t2), 
-b/2 -b/2 z z 

(Y2 - yl ) lqy2dyl dy2 (2.44) 

R w w b-l) = w,(x,y) w,(x+s,Y+n) (2.45) 
zz 

The rolling moment due to lateral fluctuations, wy, is associated 

with a dihedral effect. The local angle of attack due to a wind speed 

component from the side can be written as Houbolt (1972): 

a = WY/V 

where r is the dihedral angle. Since the dihedral angles of the right 

and left wings are opposite in sign, the lift will be opposite, also. 

Thus, the rolling moment correlation due to wy can be derived as: 

RR 

"Y 

(d = & 
I f 

ht(tl)ht(t2) iw w C’-‘(T + tl - t2)ldtldt2 (2.46) 
-00 -co YY 

where 

b/2 b/2 

Ii wywyk) = $ 1 1 hy(q)hy(y2) Rw w CVb + tl - tl), 
-b/2 -b/2 YY 

(Y, - yl)I.qy2dqdy2 

and 

R 
"Y"Y 

kn) = w,(x,y) wy(x+s,Y+d 

(2.47) 

(2.48) 
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Generally, the affect of a lateral gust is smaller than the affect of a 

longitudinal gust. However, in severe weather conditions, gusts perpen- 

dicular to the flight direction may create rolling moment which must be 

considered in control design. 

D. Pitching Moment 

The tail of an aircraft strikes a given gust some time after the 

wing does, generating a pitching moment. Defining an effective moment 

at-m of length R' (wing) and gt (tail) measured from the center of 

gravity, the pitching moment due to the vertical component of atmo- 

spheric turbulence can be written as 

03 b/2 

Mph) = 
I I 

kWhW(tl,y) w,[v(t + tl),yldydtl 

-m -b/2 

m bti2 

t 
I f 

atht(tl,y) wzCxt + v(t + tl),yldydtl 

-00 -bt/2 

(2.49) 

where the assumption that turbulence varies along the flight path but 

not across the airfoil is made. The corresponding correlation of 

pitching moment is 
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Rp (d = 
I I 

(h;(t,)h;(t2) i;CV(r + t2 - t, 11 + h.#&(t2) 

wz -co -co 

x r;;[x t V(T t t2 - t,)] + h;(t,)h;(t2) 
2 t 

x R;$xt + V(T + t, - t,)] + h;(t2)h$,) 

x i$xt + V(T + t, - t2)]Idt,dt2 (2.50) 

where 

RF[V(r + t2 - t,)] = g 

b/2 b/2 

Z I I h,w(y , ) h;b2 > 
-b/2 -b/2 

x R; C'Jb + t2 - t&y, - y,ldy,dy2 (2.51) 
Z 

R; (h-d = W,(X,Y) w,(x+LY+d (2.52) 
Z 

bt/2 bt/2 

P[x + V(T t t 
wz t 2 

$I2 - t,)l = b2 
i I 

h;ty, )h:(Y2) 

t -bt/2 -bt/2 

xR izIxt + V(T + t2 - t,), 

(Yp - y,)ldy,dy2 (2.53) 

R; b +S,d 
--~-- 

z t 
= wz(xtxt ,y) wzr;;+xt+S.Y+d (2.54) 



!Lwat 
b/2 bt'2 

Rwt[xt + v(-r + t2 - t,)] = 
wZ bbt i I 

$%jh;(y2) 
-b/2 -bt/2 

x Rit[x 
z -lz 

+ V(T + t2 - t,), 

(Y, - q)ldy2dy, 

R;$ +E,n) = 
z t 

w,(x,y) wz(x+xt+S,Y+n) 

(2.55) 

(2.56) 

bt’2 b/2 

!AW RZCX + V(T t t, - t2) ] = bb 
z lz t -bt/2 -b/2 

h;(~2h;(y,l 

x R;;cx, + V(T + t, - t2), 

(Y2 - q)3dy2dy, (2.57) 

Rtw(x +5" n) wz t ' = w,(x,y) wz(x+xt+S",y+ll) (2.58) 

5" = V(T + t, - t2) (2.59) 

hw(t,y) and ht(t,y) are the indicial lift responses to a gust hitting 

the wing and tail, respectively;at t = 0. The parameter bt is the 

horizontal tail span, and xt is the distance between the wing and the 

horizontal tail. Thus, correlations for winds blowing along the tower 

array are the parameters which influence pitching motions. These can be 

computed from the tower array data, but the B-57 aircraft is not 

equipped to measure correlations in the turbulence between the wing and 

tail assemblies. 
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The analyses presented throughout this chapter (although not 

inclusive of all possible combinations of wind loads and resulting 

aerodynamic forces) serve to illustrate the types of wind speed corre- 

lations arising from spectral analyses of aerodynamic loading in a 

turbulent environment. In general, the correlations of interest are 

those between like wind speed components in the horizontal plane of the 

aircraft's flight path. The reason for this is that the analyses 

assume each of the three gust components, i.e., longitudinal, lateral, 

and vertical, act independently of each other. In reality, this is not 

the case. However, the necessary indicial functions for carrying out 

more complex analyses are not generally available in the literature and 

would probably be too costly for practical design methods if they were 

available. 

Thus, for the moment, limiting ourselves to the spectral approaches 

outlined in the foregoing, we see that the general design and motion 

analyses call for correlations as given by Equations 2.13, 2.33, 2.45, 

2.48, 2.52, 2.54, and 2.58. It is possible to construct these correla- 

tions from the tower data and from the B-57 aircraft flight data (see 

Figure 2.1, page 12). Because of the instrument configuration for both 

the tower array and aircraft, the correlations given by Equations 2.54 

and 2.58 must be computed using Taylor's hypothesis. It would have been 

preferable to have a "T" configuration of anemometers but economics and 

aircraft structural constraints prohibit such an arrangement. The 

spectra and correlations computed from the tower data are presented in 

Chapters V, VI, VII, and VIII of this study. 
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CHAPTER III 

TOWER ARRANGEMENT AND DATA QUALIFICATION 

A. Tower Array and Field Site 

The experiments were conducted in the NASA Marshall Space Flight 

Center, Atmospheric Sciences Division, Atmospheric Boundary Layer 

Facility, located near Huntsville, Alabama. The specific tower arrange- 

ment used in this study and a brief description of the field site are 

given in this section. Additional details are given in Steely and Frost 

(1981). 

The field site is not exactly level, having slight undulations 

along the line of towers. The elevation of the ground with respect to 

the profile of the tower array is shown in Figure 3.1. The measurement 

of elevation with respect to Tower 3 as the zero elevation datum plane 

are shown in Table 3.1. From this table it can be determined that the 

building is located on an approximate 6.3:1 upgrade. 

The surrounding topography is shown in Figure 3.2. There are moun- 

tains to the northeast, east, and southeast which are approximately 2439 

m (8000 ft) away from the tower site. The height of the mountains are 

about 300 m (1000 ft) above mean sea level, whereas the height of the 

tower array site is about 190 m (630 ft) above mean sea level. There 

are flat areas to the north, south, and west of the tower array which 

are approximately the same elevation as the tower site. 

Cross sections of the terrain along a line parallel to the array 

and perpendicular to the array are shown in Figure 3.3. It is antici- 

pated that the wind blowing from the northeast, east, or southeast will 
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s/h 

Note: d % height of ground relative to zero at 
at the base of Tower 3; h Q height of 
building (h = 3.2 m) 

-80 -60 -40 -20 0 20 40 60 80 

Horizontal Distance (meters) 

Figure 3.1. Cross-sectional contour of the eight-tower array. 

o indicates the base of each tower 
x indicates ground level 



TABLE 3.1. Tower Location and Elevation 

Horizontal Elevation 
Building Building 

Location .,He,ights Meters Heights Meters 

Ground -24.12 -77.18 -0.045 -0.144 

Tl -9.04 -28.93 -0.039 -0.125 

T2 -2.22 -7.10 -0.008 -0.026 

Buildinga -0.19 -0.61 -0.002 -0.006 

T3 0.0 0.0 0.0 0.0 

s3 1.56 4.99 0.012 0.038 

s4 3.13 10.02 0.031 0.099 

T4 4.69 15.01 0.043 0.138 

T5 16.25 52.00 0.103 0.330 

aBuilding dimensions: Height (H) = 3.2 m 
Width = 2.4 m 
Length = 26.8 m 



Figure 3.2. Topography map of the terrain surrounding the field site. 
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Figure 3.3 Cross section of the terrain features. 
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be affected by the mountains and will be nonuniform. On the other hand, 

a wind blowing from north, south, or west will be relatively uniform. 

The towers are lined 52 degrees counterclockwise from north. 

Therefore, a wind blowing along the tower array (from Tower 1 to Tower 

5) will be reasonably undisturbed. Run #8624, discussed later, was 

along this direction. The wind blowing perpendicular to the tower array 

from the northeast approaches over relatively flat land and can also be 

considered undisturbed. Run #8623, also discussed later, was from the 

northeast. 

The present experimental setup is shown in Figure 1.1, page 4. The 

tower arrangement consists of five in-line 20-m towers (indicated by Tl 

through T5) and four short towers (indicated by Sl through S4). The 

tall towers are instrumented at the 3-m, 6-m, 12-m, and 20-m levels 

(referred to as Levels 1, 2, 3, and 4, respectively) with the exception 

of T3 on which the instruments from the 20-m level were lowered to the 

9-m level and recorded as Level 4. The short towers are instrumented at 

the Z-m, 3-m, and 6-m levels (referred to as Levels 1, 2, and 3, respec- 

tively). Towers Sl and S2 are stationed behind the block building 

laterally from T3, while S3 and S4 are stationed in-line with the tall 

towers between T3 and T4. Throughout this study instrument locations 

(or measuring stations) for the tall towers are designated by TnLm where 

n is the tower number and m is the level (e.g., T5L2 is Tower 5, Level 

a. For the short towers, the designation in SnLm. 
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B. Data Qualification 

The data reduction procedures are described in detail in Steely and 

Frost (1981). The data used in this report were qualified visually 

by plotting time histories for each level and tower as shown in Appendix 

B and through inspection of the mean values tabulated in Tables B.l and 

B.2. Data from the measuring positions given in Table 3.2 have been 

eliminated from the data set. Justification for eliminating these data 

is also given in Appendix B. 

TABLE 3.2. Measuring Positions from Which Data Have Been Eliminated 

Run No. Station 

8623 TlLl (vertical only) 

8623 TlL2 (vertical only) 

8623 T2Ll (vertical only) 

8624 TlL2 (vertical only) 

8623 T3L4 

8623 T5L3 

8623 SlL3 

8624 T3L4 

8624 T5L3 

8623 S4L2 

8624 S4L2 
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CHAPTER IV 

VELOCITY PROBABILITY DISTRIBUTIONS 

The probability density distributions are discussed in this chapter. 

The data were measured for Run #8623 and Run #8624. Data samples at 0.1 

second for a 900-second record length were used. Plots of the proba- 

bility density of the measured data as compared with a Gaussian proba- 

bility density distribution are given in Appendix C. The probability 

density function for the velocity fluctuation is computed as follows. 

Consider the time history records x(t) illustrated in Figure 4.1. The 

probability that x(t) assumes a value within the range between x and 

(x + Ax) may be obtained by taking the ratio of TX/T, where TX is the 

total amount of time that x(t) falls inside the range (x,x+Ax) during 

the total record time T. This ratio will approach an exact probability 

description as T approaches infinity. In equation form: 

T 
prob[x < x(t) _ < x t AX] = lim + 

T- 
(4.1) 

For small Ax, a probability density function p(x) can be defined as 

follows: 

prob[x < x(t) 2 x + Ax] = p(x)AX (4.2) 

therefore 

p(x> = lim probh < X(t) 5 X + AxI = lim T 

Ax-to 
Ax 

Ax-4 
-& lim+- i I T+ 

(4.3) 
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Figure 4.1. Calculation of probability function p(x) for a random 
process. 

The Gaussian function is given by 

p(x) = J-e- 
(x2; a2 

(4.4) 
cd% 

The probability density of the turbulence data matches reasonably well 

with the Gaussian distribution. There is, however, a definite trend 

toward more smaller fluctuations and less larger fluctuation than the 

Gaussian curve predicts, i.e., greater Kurtosis. 
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CHAPTER V 

LENGTH SCALE 

An important characteristic of the structure of turbulence is the 

length scale. This length scale is to a certain extent a measure of the 

longest connection, or correlation distance, between the velocity at 

two points of the flow field. It is reasonable to expect that the 

degree of correlation will decrease with increasing separation of the 

points and that beyond some finite displacement this correlation will 

approach zero. In general, the length scale varies with height, with 

surface roughness, and with the direction of the velocity component 

relative to the mean wind, i.e., the longitudinal direction versus the 

lateral and vertical directions. 

There are a number of methods available for estimating the numer- 

ical value of L. The most common method is to integrate the auto- 

correlation coefficient from zero to infinity with respect to lag time 

or separation distance: 

(T)dT = 1 Bw w (a)da 

0 
ii 

(5.0 

where Taylor's hypothesis has been used to relate the spatial correla- 

tion to the time correlation, i.e., R = &; this is called the integral 

length scale and is referred to as Method 1 for computing length scales 

throughout this study. In general, when the length scale is denoted by 

L without a subscript, the integral length scale is implied. 
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A second method of determining the length scale is to integrate 

the Correlation Coefficient from Zero t0 a Specific ValUe Of R = Sk 

instead of to infinity. 

'k 

L2 = 0.746Sk = 2 
f 

Bw w (g)da 

0 ii 
(5.2) 

Sk is chosen such that twice the area under the correlation coefficient 

up to a value of Sk is equal to 0.746 Sk, a product which can be shown 

to represent a measure of L. This method is referred to as Method 2. 

Equation 5.2 is based on the von Karman spectra theory. The same theory 

applied to Dryden spectra is given by: 

sD 

L2 = SD = 2 
f 

B, w (a)da 

0 
ii 

(5.3) 

L2 is defined such that it is equal to twice the area under the auto- 

correlation coefficient integrated to a value of SD. 

In computing the length scale by the above integral techniques, 

two segments of the data tapes consisting of 8192 digitized values 

each (approximately 10 minutes) were used to compute the correlation. 

The two values of length scale computed from the respective correlation 

coefficients for each segment were then averaged to give the reported 

value of L. The values of L computed by Method 1 at each measuring 

station are shown in Figure 5.1. Those in parentheses are for Run #8624, 

whereas those not in parentheses are for Run #8623. The values of 

length scale computed by Method 2 are shown in Figures 5.2 and 5.3 for 

the von Karman (Equation 5.2) and Dryden (Equation 5.3) definitions, 
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Figure 5.1. Spatial variation of the integral length scale in meters as computed 
by Method 1. (Component 1: Numbers not in parentheses, Run #8623, 
crosswind; numbers in parentheses, Run #8624, along wind). 
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Figure 5.2. Spatial variation of the integral length scale in meters as computed 
by Method 2, Equation 5.2. (Component 1: Numbers not in parentheses, 
Run #8623, crosswind; numbers in parentheses, Run #8624, along wind). 



130.8(223.4) -L 

102.6(121.6) 

72.7(:76.2) 

129.1(.443.4)T3 

I 

131.9(245.3) 

158.1c470.8) 

79.1(:332.1) 

.70.6(.42.1) 

85.3(;0.7) 

68.3(:61.4] 

65.9Cl17.6) 

Figure 5.3. Spatial variation of the integral length scale in meters as computed 
by Method 2, Equation 5.3. (Component 1: Numbers not in parentheses, 
Run #8623, crosswind; numbers in parentheses, Run #8624, along wind). 



respectively. (The von Karman and Dryden forms of B 
Wiwi 

are given in 

Chapter VI.) 

In computing the integral length scale, large variations in the 

computed value occurred depending on the length of recorded use. 

Figure 5.4 illustrates this variation. As an example, when the length 

scale was computed using 2048 datum points (approximately 3 minutes), 

values for different sections of the time history ranged from 34 m to 

134 m. The length scale tends to have more stable values as the record 

length used to compute the auto-correlation increases. This is, of 

course, evident from an error analysis of the correlation coefficient 

which shows the rms error decreases with increasing record length. 

Since 16,384 data points were unwieldy from the economics of computer 

uses, two segments of 8192 datum points each (as mentioned before) were 

used to compute two correlation coefficients for each measuring station 

and the average value of L computed from these is used throughout this 

study. 

A third method of computing the length scale employs the turbulence 

energy spectrum (see Chapter VII). This method defines L in terms of 

the truncated root mean square value, aT, computed from the measured 

spectrum and the total root mean square value, u, as computed by the 

direct method. 

kO I 1 
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(5.5) 

where 4(k) is the turbulence energy spectrum and k is the reduced 

spatial frequency 2rf/W. Integration of Equation 5.4 from kl to kg, the 

lowest and highest measured frequencies assuming a straight-line spec- 

trum over this range, gives: 

1 

312 

L3 
- _ - 

:/3 
kO 

:,3 

for a von Karman spectrum, and 

L3=$$12 [+-+] 

(5.6) 

(5.7) 

for a Dryden spectrum. 
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In evaluating Equations 5.6 and 5.7, values of u computed from 

‘ij = (‘~)l”, which are tabulated in Tables 6.1 through 6.4, pages 57 

through 60, were employed. Values of uT were found by integrating the 

computed spectrum given in Appendix D from the lowest measured frequency 

of 0.0098 Hz to the highest measured frequency of 2 Hz. Figure 5.5 

shows values of L3 computed from Equation 5.6 for Runs #8623 and #8624, 

respectively. Figure 5.6 shows values of L3 computed from Equation 5.7 

for Runs #8623 and #8624, respectively. Finally, a fourth method 

(Method 4) of computing the length scale is based on the value of the 

frequency f = fp, at which the computed spectrum multiplied by frequency 

f+(f) takes on its maximum value. For the von Karman spectrum model 

L4 = 0.146 w//f, (5.8) 

Values of fp were determined from the spectra presented in Appendix D by 

multiplying the value of 4(f) by the corresponding frequency. The 

computer was programmed to select the value of f 
P 

. In some cases, the 

computer does not make the same selection as a human observer would 

make. 

Figures 5.1 through 5.3 and 5.5 through 5.7 show that the length 

scales computed by the four different methods described above, although 

differing in magnitude, have the same general trends. Length scales 

computed by the integral methods are typically larger by at least a 

factor of two than those computed by the spectral methods. All length 

scales are for longitudinal components of the gust. In Run #8623, the 
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Figure 5.5. Spatial variation of the integral length scale in meters as computed 
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wind blows perpendicular to the line of the tower array. The length 

scales in this case are not expected to be influenced by the block 

building except for those measurements immediately next to the block 

building. For Run #8624, on the other hand, where the wind blows along 

the line of towers; the length scale is significantly influenced by the 

flow wake generated behind the building. 

The length scales in the stagnant region of the wake are very 

small; that is, measurements at T3L1, T4L1, S2L1, S2L2, S3L1, S3L2, 

S4L1, and L4L2. In turn, the integral length scales at T4L4 and T5L4 

are very large, suggesting a stretching of the turbulence perhaps due to 

acceleration of the flow over the separation region (see Frost and Shieh 

1981). In theory, length scales are an indication of the size of the 

eddies. Therefore, at the higher tower levels, larger length scales 

generally occur. 

Most references show the length scales for the longitudinal compo- 

nent to increase with height. Shiotani (1975) proposes that L increases 

with height z to the 0.19 power, i.e., 

L= 207(~/80.8)~*'~ (5.9) 

This expression is for high average wind speed (W z 10 m/s). Kaimal 

(1973) suggests 

L = 0.0374 r;i 
0 u 

(5.10) 



L = 25 z'*~~/z, 0.063 (5.11) 

for strong winds or a neutral atmosphere where z. is the surface rough- 

ness. For the NASA/MSFC Boundary Layer Facility, the surface roughness 

for the direction along the array is approximately 0.01 m (see Frost and 

Shahabi 1977). Etkin (1972) suggests 

L = 2ofi (5.12) 

Duchene-Marullaz (1975) calculated the length scale from full-scale 

measured data in a suburban area. Similarly, Neal (1982) calculated the 

length scale from measured data in flat approach terrain upstream of an 

escarpment. Values reported in these references along with values 

computed from Equations 5.9 through 5.12 at the 20-m level are given in 

Table 5.1. In Run #8623 the average value of length scale at the 20-m 

level range from 50 m to 250 m, depending on the method of calculation. 

For Run #8624 the average length scale ranged from 40 m to 580 m. 

Thus, the values reported in the literature tend to bracket the 

results computed in this field study. 

TABLE 5.1. Measured and Computed Integral Length Scales at the 20-m 
Level Based on Reported Results 

Reference 
Length Scale 

(4 

Shiotani (1975) 
Kaimal (1973) 
ESDU (1974) 
Etkin (1972) 
Duchene-Marullaz (1975) 
Neal (1982) 

158.8 
51.9 
95.3 
89.4 
95.0 

290.0 
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CHAPTER VI 

CORRELATIONS 

A. Definitions and Nomenclature 

Space-time correlations of the atmospheric flow have been computed 

from the data of this study. These correlations are presented in this 

chapter. In general, given two sets of data x(t) and y(t) with means 

equal to zero (X( = y( = 0), a correlation function Rx,(~) is 

defined as 

T 

Rxy(d = lim f 
f 

x(t)y(t + T)dt 
T* 0 

A correlation coefficient is then defined as 

BXy(d = Rxyh)/bxuy) 

(6.1) 

(6.2) 

where ax and ay are the standard deviations of x(t) and y(t), respec- 

tively. As defined, B(T) is normalized and theoretically bound within 

the range -1 5 B(r) 2 1. Computation of the correlation coefficients 

B(T) was accomplished by digital techniques, explained in detail by 

Steely and Frost (1981). The fast Fourier transform (FFT) technique has 

been used throughout. As reported in Steely and Frost (1981), this 

technique is more efficient and gives almost identical agreement with 

the direct method (see Figure 6.1). 

In this study, the symbol for the correlation coefficient, 

BUi jukc(TJg will be used where U.. and Uka are longitudinal velocity 
1J 

components with Uij being measured at tower "i" and level "j" while 
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'kn. is measured at tower "k" and level "R." When i # k and j # R; 

BUi juk,(T) is called a two-point spatial correlation coefficient. If 

i = k and j = R, then it is called a one-point correlation coefficient 

and is written as Bu (T) to indicate only the tower and level at which 
ij 

the measurements were made. The terminology "auto-" and "cross-" corre- 

lations, used frequently in the literature, are used to denote velocity 

components. For the longitudinal components, as an example Bu (T), is 
ij 

called an auto-correlation.coefficient, whereas BU v (T), when u and v 
ij ij 

are velocity components in different directions, indicates a cross- 

correlation coefficient. Figure 6.2 further defines this nomenclature. 

B. Experimental Results 

In Figures 6.3 and 6.4, two-point spatial correlations have been 

plotted relative to their tower position and level. The correlations 

have been computed with respect to the position designated in the 

caption. For example, in Figure 6.3 the correlations have been computed 

relative to TlLl, which is evident from the fact that the correlation 

coefficient is unity at that position. 

Values in parentheses in Figures 6.3 and 6.4 denote values for the 

wind parallel to the building axis (Run #8623) or perpendicular to the 

line of towers. Thus, the unparenthesized values are along-wind corre- 

lations; whereas those in parentheses are crosswind correlations. 

Some interesting properties of the correlation coefficient are 

observed in Figures 6.3 and 6.4. Again, taking Figure 6.3 as an example, 

it can be seen that directly behind the block building there is very 

little correlation with the upstream position TlLl for the along-wind 
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Definition: 

T 

Rx,(') = lim f x(t)y(t + T)dt 
Tw f 

0 

Bxyb) = Rxy(d/~x~y; t-1 <, Bxy(d 2 1) 

Nomenclature: 

BUijUkL(~) where Uij is velocity measured at Tower i, Level j 

Ukn. is velocity measured at Tower k, Level R 

T#O i f k and j # R = Two-point time-dependent spatial correlation 

T=O i # k and j # R = Two-point spatial correlation 

~$0 i = k and j = R = One-point time-dependent spatial correlation 

-r=o i = k and j = R = One-point spatial correlation 

Figure 6.2. Spatial time-dependent correlation terminology. 



Tl T2 T3 T4 T5 
471 (.543) .506(.442) 

580(.647) 

,776(.764) 

l.O(l.0) 

S89(.4691 

.449(.45OL451(.429L445 (.408) -..429 (.440) 

.158(.4282-.123(.417)- .12%423j-~310 (.333) --.376 f.421) 
.110(.381)-.238(.367) 

f4 

.048(.504) 

.033(.361) 

Figure 6.3. Two-point spatial correlations of the longitudinal velocity component 
relative to TlLl. (Numbers in parentheses, Run #8623, crosswind; 
numbers ndt in parentheses, Run #8624, along wind). 



Tl T2 T3 T4 T5 
i.0 (1.0) 

.702(.708) 

.547(.605) 

.471(.543) 

.637 (.505) t .563(.406) 

.485(.349)-.445(.410)- .391(.429) 

Sl 

.554(.416) 

.110(.434) 

.468(.412) 

.430(.410) 

Figure 6.4.' Two-point spatial correlations of the longitudinal velocity component 
relative to TlL4. (Numbers in parentheses, Run #8623, crosswind; 
numbers not in parentheses, Run #8624, along wind). 



case, which is not true, however, for the crosswind case. A wake 

obviously occurs in the former case causing a breakdown in the flow 

structure between the undisturbed flow upstream and the wake region 

behind the building. In fact, the wake which typically extends 10 to 14 

building heights downstream is outlined by the low correlation values. 

On the other hand, when the flow approaches the narrow end or small 

aspect ratio of the building, very little degradation of the correlation 

occurs. Although one might anticipate longitudinal vortices being shed 

and rolling up along side the building; no evidence of this is observed 

in the data. As expected, the correlations in the free-stream (upper 

levels) increase with a decrease in the distance separating the two 

points of correlation. It might be noted that due to the definition of 

the two-point spatial correlation, RU U (0) = RU 
ij ka 

U (0). Also, if 
ka ij 

%. . = 0, then RU..U.. is undefined. A negative correlation between two 

po:its suggests a'it$ztured reverse flow region where a longitudinal 

fluctuation in the positive direction at one point results in a negative 

fluctuation at another point. Some negative values of the along-wind 

correlations are observed immediately behind the builidng on the off- 

axis towers. These negative values indicate reverse flow in the wake. 

One might anticipate stronger negative values along the centerline; 

however, these are not observed. 

The extent to which a signal is felt at two different points 

depends on the time it takes the signal to travel from one point to the 

other, plus any changes which may have occurred during this time. A 

two-point space-time correlation, RU u ('c), describes the general 
ij ka 

dependence of the velocities at one tower and level position to those at 
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another position. Information relative to the time required for a 

signal to pass from one point to another in the wind field can be 

determined from the space-time correlation. As the signal at one point 

la- 

for 

is displaced 

tion function 

the signal to 

in time re lative to another point, the space-time corre 

will peak at the value of 'C equal to the time required 

propagate at the speed of the wind to the second point 

Values of the correlation are nondimensionalized with a,, a,, 
ij ka 

where o U and d are the turbulent intensities at the tower and level 
ij 'ka 

indicated. Tables 6.1 and 6.3 present the turbulent intensities au 
ij 

for Runs #8624 and #8623, respectively. Note ou is the absolute value . . 

( i.e., dimensional value) of the auto-correlatioiJfor zero spatial 

separation and zero time lag. Similar values of the cross-correlations 

are given in Tables 6.2 and 6.4. Mean wind speeds for all measuring 

stations are given in Tables 6.5 and 6.6 for Runs #8624 and #8623, 

respectively. 

Figures 6.5 and 6.6 are plots of two-point space-time correlations. 

Figure 6.5 illustrates vertical correlations, whereas Figure 6.6 illus- 

trates horizontal correlations. Figures 6.5a and 6.5b are plots of the 

correlation of L4 with all other levels on Tl and of L4 with all other 

levels on T5, respectively. These correlations for the wind perpendicu- 

lar and parallel to the building or line of towers will not be appre- 

ciably different for Towers 1 and 5 where the flow is relatively 

undisturbed in both cases. Inspection of the data show that the corre- 

lations are very similar. The peaks in the correlation which shift to 

greater times with decreasing height are associated with the decreasing 

mean wind speed near the ground (e.g., logarithmic velocity profile). 
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TABLE 6.1. Value of 0; for Run #8624 (number of digitized points used is 8192) 
ij 

Tl T2 T3 T4 T5 Sl S2 S3 S4 

1.31 1.05 0.84 1.75 1.39 1.78 1.05 1.00 1.82 

0.71 1.17 0.46 2.06 0.87 0.86 1.05 1.36 1.37 

29.69 0.24 0.02 0.83 0.27 0.11 0.18 0.11 0.75 

1.49 1.33 1.45 2.74 1.6? 1.67 0.64 1.69 1.83 

0.87 0.81 0.82 1.15 0.93 1.09 0.53 1.64 1.43 

29.69 0.52 1.14 0.58 0.11 0.51 0.32 0.72 29.69 

'3j"3j I- V3jv3j 

1.75 1.64 1.68 2.03 17.93 1.60 1.70 1.67 2.51 

L3 1.01 0.86 0.81 0.77 0.00 1.16 1.03 1.05 1.24 

'3jw3j 0.39 0.57 0.32 0.33 0.46 0.39 1.04 0.34 0.05 

1.97 2.05 1.52 2.00 2.39 -- -- -- -- 

0.96 0.87 1.68 0.75 0.83 em _- mm me 

0.50 0.48 0.01 0.43 0.58 mm _- _- mm 



TABLE 6.2. Values of Cross-Correlation ui v for Run #8624 (number of digitized 
points used is 8192) ij ij 

Tl T2 T3 T4 T5 Sl s2 s3 s4 

'lj'lj 

i vljwlj 

0.29 0.25 -0.18 -0.24 0.19 -0.46 -0.35 -0.09 -0.03 

Ll -2.07 0.00 0.00 -0.35 -0.12 -0.03 0.03 0.00 0.12 

'lj'lj -0.64 0.06 0.00 0.36 0.00 0.02 0.02 0.00 0.34 

0.26 0.26 0.11 0.20 0.27 -0.37 0.04 -0.26 -0.09 

2.19 -0.17 0.25 -0.44 -0.13 0.03 0.00 -0.34 0.00 

0.75 0.00 0.05 -0.03 -0.05 -0.07 0.02 0.29 -0.05 

0.32 0.30 0.29 0.37 0.00 0.11 0.23 0.02 0.00 

-0.23 -0.34 -0.22 -0.31 -0.34 -0.02 -0.31 -0.06 0.01 

0.07 -0.02 0.03 0.00 0.00 0.01 -0.12 0.04 0.00 

0.22 0.26 0.46 0.20 -0.05 -- -- -- -- 

-0.31 -0.31 0.00 -0.34 -0.52 _- __ __ - 

0.04 0.03 0.00 0.00 0.1, -- -- -- -- 



TABLE 6.3. Value of ui for Run #8623 (number of digitized points used is 8192) 
ij 

Tl T2 T3 T4 T5 Sl s2 s3 s4 

2.17 2.58 1.80 1.77 1.75 1.34 1.60 1.39 1.61 

1.51 3.28 2.47 1.44 1.49 1.81 0.79 1.25 1.40 

I 'lj'lj 3.95 2.03 0.85 0.20 0.21 0.02 0.21 0.42 0.15 

2.62 2.99 2.47 2.59 1.85 1.71 1.40 1.66 1.76 

1.69 2.27 1.68 1.05 1.79 1.86 1.36 1.45 1.47 

29.70 0.28 1.09 0.35 0.09 0.27 0.71 0.40 0.17 

2.65 2.54 2.95 2.07 2.04 12.23 2.49 2.03 2.04 

1.88 1.56 1.81 1.61 0.00 9.97 1.80 1.63 1.72 

0.50 0.45 0.53 0.53 0.32 0.33 0.63 0.61 0.01 

2.68 2.46 2.73 1.88 2.34 -- -- -- -- 

1.85 1.63 0.03 1.63 I.56 __ __ _- mm 

0.93 0.68 0.00 0.84 0.85 -- -- -- -- 



TABLE 6.4. Values of Cross-Correlation CT; v 

points used is 8192) 
for Run #8623 (number of digitized 

ij ij 

Tl T2 T3 T4 T5 Sl s2 s3 s4 

-0.47 0.45 0.45 -0.13 0.08 -0.29 0.27 -0.12 -0.07 

-0.16 0.11 -0.24 0.02 0.01 -0.01 0.03 -0.08 -0.02 

0.14 0.10 -0.30 -0.20 -0.11 -0.04 -0.10 -0.18 -0.11 

-0.55 -0.68 -0.36 -0.17 0.02 -0.34 0.24 -0.20 -0.14 

-0.21 0.09 -0.30 -0.06 0.00 -0.05 -0.33 -0.16 -0.02 

-1.59 0.04 -0.35 -0.30 0.05 -0.17 -0.09 -0.15 -0.11 

-0.66 -0.55 -0.79 -0.02 0.00 -9.26 -0.38 -0.32 -0.29 

-0.06 0.02 -0.10 -0.01 0.00 d.04 -0.24 -0.19 0.02 

-0.33 -0.21 -0.24 -0.35 -0.28 -0.25 -0.38 -0.25 0.05 

-0.66 -0.44 -0.01 -0.38 0.1-j -- -- -- -- 

0.07 0.03 0.00 -0.03 -0.12 -- -- -- -- 

-0.23 -0.30 -0.02 -0.49 -0.43 -- -- -- -- 



TABLE 6.5. Mean Wind Speed (m/s) at All Stations, Run #8623 

Tl T2 TJ T4 T5 Sl S2 S3 S4 

Ll 5.04 4.38 4.32 5.32 5.80 3.78 3.56 4.29 4.69 

L2 5.77 6.48 6.39 4.99 6.29 4.88 4.30 5.06 5.25 

L3 6.81 6.50 6.86 6.50 6.76 5.50 6.33 5.93 5.96 

L4 7.36 7.16 6.79 6.97 7.12 __ __ __ __ 
.=:. : ; 7: : ~___~ I r _ -__:2: r_zz L 

TABLE 6.6. Mean Wind Speed (m/s) at All Stations, Run #8624 

.~ _-- .._ --. 

Tl T2 T3 T4 T5 Sl s2 s3 s4 

Ll 3.62 2.67 0.29 0.98 5.08 1.41 0.47 0.69 0.50 

L2 4.22 4.17 4.57 4.00 4.69 2.85 0.51 0.28 0.68 

L3 5.16 4.92 5.22 5.44 3.52 3.89 4.79 3.97 3.76 
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0.8 

Run=8623 (crosswind)----- 
Run=8624 (along wind)- 

Level=4 

0.6 

BU,4"lj(T) 
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(a) Vertical correlation relative to TlL4. 

1.0 

R 
Run=8623 (crosswind)----- 
Run=8624 '(along wind)- 

T5L4 Tower=1 - 
Level=4 Along 

N=8192 A---- 1 
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Figure 6.5. Two-point vertical space-time correlations. 
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Figure 6.6. Two-point horizontal space-time correlation relative to TlL4. 



(Note that the instrumentation on T5L3 was not operating correctly.) 

The increase in lag time at which the peak in the correlation occurs can 

be explained by the fact that the boundary layer has not fully recovered 

at T5. The lower mean velocities in the unrecovered region results in 

the signal propagating at a lower speed and thus requiring a longer time 

to traverse a given distance. 

In Figure 6.6 (horizontal two-point space-time correlations), 

considerable difference in the correlations for Run #8624 (along the 

tower array) and Run #8623 (across the tower array) is observed. This 

is as expected since Run #8624 now represents the along-wind correla- 

tion, whereas Run #8623 is the crosswind correlation. Peaks occur in 

the along-wind correlation and are associated with the turbulence being 

carried with the mean flow (i.e., Taylor's hypothesis). It should be 

noted that the instrumentation on T3L4 was moved to the 9-m level, and 

for this reason, it has been excluded in Figure 6.6. No peaks are 

observed in the crosswind correlations and their overall magnitude is 

considerably less than the along-wind correlation. 

The differences in the along-wind and crosswind correlations 

suggest a stretching and transport of the eddies in the along-wind 

direction. 

Figure 6.7 shows the two-point horizontal space-time correlation at 

Level 2 which is just slightly above the wake region created by the 

building. One sees the same general characteristic of the correlation 

for the along-wind direction. For the crosswind direction, however, one 

observes peaks at approximately a 2-second lag time between S3L3 and 

S4L3. These peaks may possibly be related to some organized shedding of 
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Figure 6.7. Two-point horizontal space-time correlation slightly 
above the wake region relative to T3L2. 
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the flow from the building. That is, the peaks may be associated with a 

vortex pattern or result due to a component of wind acting along the 

direction of the tower due to the displacement of the flow of the 

building. 

Figure 6.8 further illustrates the effect of the presence of the 

building on the flow field. It shows the two-point horizontal space- 

time correlation at Level 1 (i.e., in the wake region). The correlation 

of T3Ll with itself drops off very quickly and approaches zero within 

ten seconds. The correlation with T3Ll and all the other measuring 

positions along Level 1 is almost zero. An interesting effect, however, 

is seen in the correlation with T5Ll. This correlation starts out 

negative and becomes positive in approximately ten seconds. This 

suggests an organized fluctuation of the reattachment point of the wake. 

Since, in general, the wake region would extend roughly ten building 

heights downstream, it is anticipated that the flow will reattach 

somewhere between Towers 4 and 5. It is well known that the reattach- 

ment point of a turbulent flow will oscillate, and further examination 

of this correlation might shed some light on this particular aspect of 

turbulent wakes. It is not the purpose of this study, however, to 

pursue this investigation further. 

The crosswind correlations do not show any characteristic peaks as 

they do for Level 2. However, they tend to remain more constant at 

approximately a value of 0.4 showing very little drop off out to values 

of 20 seconds. The correlation of T3Ll with itself drops off somewhat 

faster at Level 1 than at Level 2, reaching a value on the order of 0.4 

in 10 seconds for the former case and a value of approximately 0.6 at 

10 seconds for the latter case. 
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Figure 6.8. Two-point horizontal space-time correlation in the wake 
region relative to T3Ll. 
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Figures 6.9 and 6.10 show the correlation between the towers 

positioned immediately behind the building at Level 2 and Level 1, 

respectively, for the tall towers. For this case, the correlation for 

Run #8623 now becomes essentailly the along-wind correlation whereas 

that for Run #8624 becomes a crosswind correlation. One can see that 

the general characteristics of the correlations are thus reversed. The 

crosswind correlation, or dashed line (now the along-wind correlation), 

shows peaks in the correlation due to the fact that the mean wind 

transports some of the turbulence along the wind direction. The along- 

wind correlation, solid line (now the crosswind correlation), shows a 

peak at Level 2 in a similar manner to that shown in Figure 6.10. For 

Run #8624 (along-wind), the correlation at Level 1 is essentially zero 

for S2L2 and SlL2. The reason for this is undoubtedly due to the fact 

that the anemometers are almost level with the building; and, consequently, 

this region of flow is essentially stagnant and no correlation occurs. 

Correlations for other velocity components are given in Appendix C. 

C. Comparison with Theory 

A number of empirical and semi-empirical equations for predicting 

the behavior of the longitudinal and transverse correlations have been 

developed. Notable among these are the von Karman and the Dryden 

methods. Figure 6.11 defines the theoretical correlations. Note that 

the transverse correlation function defined (see sketch in Figure 6.11) 

is not the same correlation as the crosswind correlation computed in the 

preceding subchapters. The correlations are also expressed in terms of 

a length scale rather than a separation distance and a lag time. The 
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Figure 6.9. Two-point horizontal space-time correlation immediately 
behind the building and slightly above wake relative to 
T3L2. 
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Figure 6.10. Two-point horizontal space-time correlation immediately 
behind the building and in the wake region relative to 

'T3Ll. 
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U 
-1 

von Karman 

Longitudinal Correlation Function: 

BU 
ij (r) = r(1/3) aL 22'3 [L]1'3 Kl,3 [I$] 

B = -4l(x)U(x+r)> 
U ij ai 

BV 
= <V(x)V(x+r)z 

ij G 

Dryden 

BU (r) = eeriL 
ij 

Transverse Correlation Functions: 

Bv ij b) = r(1/3) aL 22'3 I'll" {Kl,3 [$-I - (&] K2/3 [$I} BVij(r) = e-r'L [' - %] 

a = 1.339 

K = modified Bessel function of the second kind 

L = longitudinal isotropic turbulence integral scale 

Figure 6.11. von Karman and Dryden expressions for the correlation coefficients. 



von Karman and the Dryden spectrum, therefore, are based on the assump- 

tion that Taylor's hypothesis is valid and that, in general, time- 

dependent correlations can be converted to a spatial correlation by the 

relationship r = m. The validity of Taylor's hypothesis is well justi- 

fied by the data. Figure 6.12 compares the spatial correlation converted 

to time with Taylor's hypothesis to the computed time correlation. The 

agreement is excellent. 

The Dryden and von Karman correlations were computed using length 

scales Ll and L4 discussed in Chapter V. As shown in Chapter VII, L4 

results in the best agreement of the spectra with the von Karman and 

Dryden models. Comparison of the theory with the experimental data are 

shown in Figures 6.13 through 6.24. 

The agreement with the theory, in general, is varied. Figures 6.13 

and 6.14 show reasonable agreement with the experimental results; 

however, Figure 6.16 shows poor agreement. This could possibly be 

explained if Run #8623 was along the array (that is, perpendicular to 

the building) where it might be anticipated that Tower 4 should be 

disturbed by the presence of the building. 

Considering the results in Figures 6.16 through 6.18, the theoret- 

ical correlations do not show the initial sharp drop-off that is indi- 

cated by the experimental data; however, at values of lag time greater 

than 5 to 10 seconds, the analytical models take on the same character- 

istic slope as the experimental data. 

The analytical correlations in Figures 6.13 through 6.18 are com- 

puted with a length scale based on Method 1, i.e., Ll. If one computes 

the length scale by Method 4 (see Chapter V), the theoretical curves now 
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Figure 6.12. Illustration'of validity of Taylor's hypothesis (e spatial 
correlation converted to a time correlation with the 
relationship R = mu). 
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Figure 6.13. Comparison with von Karman and Dryden expressions for the 
longitudinal correlation (length scale L1, Tl, Run #8623). 
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Figure 6.14. Comparison with von Karman and Dryden expressions for the 
longitudinal correlation (length scale Ll, T2, Run #8623). 
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Figure 6.15. Comparison with von Karman and Dryden expressions for- the 
longitudinal correlation (length scale Ll, T4, Run #8623). 
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Figure 6.16. Comparison with von Karman and Dryden expressions for the 
longitudinal correlation (length scale L,, 

Tl, Run #8624). 
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Figure 6.17. Comparison with von Karman and Dryden expressions for the 
longitudinal correlation (length scale Ll, T2, Run #8624). 
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Comparison with von Karman and Dryden expressions for the 
longitudinal correlation (length scale L1, T4, Run #8624). 
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Figure 6.19. Comparison with von Karman and Dryden expressions for the 
longitudinal correlation (length scale L4, Tl, Run #8623). 
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Figure 6.21. Comparison with von Karman and Dryden expressions for the 
longitudinal correlation (length scale L4, T4, Run #8623). 
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Figure 6.23. Comparison with von Karman and Dryden expressions for the 
longitudinal correlation (length scale L4, T2, Run #8624). 
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Figure 6.24. Comparison with von Karman and Dryden expressions for the 
Longitudinal correlation (length scale L4, T4, Run #8624). 
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show very good agreement with the data for the first 2 to 3 seconds and 

then depart at a slope which more closely approximates the slope shown 

in Figures 6.13 through 6.18 based on a length scale computed by Method 

1. Figure 6.24 shows that the correlation, particularly near the ground, 

does not behave like the theoretical correlation in either case. This 

is to be expected, however, in view of the fact that the anemometers on 

Tower 4 at Levels 1 and 2 are in the wake region behind the simulated 

block building. 

It is apparent that by selecting a length scale which behaves more 

like the length sea le calculated by Method 4 for values of lag time on 

the order of 2 to 3 seconds and then converting to a length scale more 

similar to that computed by Method 1, good correlation of the data would 

be given. At present, however, there is no theoretical justification 

for this approach. It seems, however, by empirically selecting the 

length scale, relatively good agreement with the experimental data could 

be obtained using either the von Karman or the Dryden spectra. The 

choice of the von Karman versus the Dryden models for spectra is 

described and elaborated upon in Chapter VII. 

The comparison of experiment with theory clearly indicates that new 

empirical correlations which incorporate the effects of surface rough- 

ness and other ground effects are needed to provide better agreement 

between theory and the experimental results of this study. 

86 



I - 

CHAPTER VII 

SPECTRUM ANALYSES 

This chapter addresses the auto-spectra for the.wind speed data. 

Only the longitudinal and vertical components at Level 4 are considered. 

The theory of the spectra is first addressed. Then three correlation 

models--von Karman-, Dryden, and Kaimal--are reviewed. These models are 

compared with the experimental results. 

A. Theory 

The two-sided power spectral density of a random process 1x1 is 

defined as the Fourier transform of its auto-correlation function 

(Bendat and Persol 1971). 

S,(f) = Rx(T)e-i2nfrdT (7.1) 

where f is frequency in cycles per second. From the sytrnnetry properties 

of stationary correlation functions, it follows that 

Sx(f) = Sx(-f) (7.2) 

These equations state that the two-sided power spectral density function 

is real, non-negative, and an even function of f; therefore, the one- 

sided power spectral density function, 4,(f) where f varies only over 

(OP) 3 is defined by 

O,(f) = 2S,(f) (7.3) 

or 
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e,(f) = 4 1 R,(T) cos ErfTdT (7.4) 
0 

It is noted that negative f has no physical significance; and hence, the 

power spectrum contains no phase information. 

For stationary random data, two common methods for computing the 

power spectral density function are (1) the standard method based on 

computing the power spectral density function from a straightforward 

Fourier transform of the auto-correlation function, and (2) the direct 

Fourier transform method based on computing the power spectral density 

function via a finite-range fast Fourier transform (FFT) of the original 

data. 

Briefly, the standard method is computed as follows. For sampled 

data from a transformed record x(f), which is stationary with x = 0, a 

raw estimate ex'(f) of a true power spectral density function $x(f) is 

defined for an arbitrary f in the range 0 < f < f, by - - 

4;(f) = 2h 

i 

Rb+2mi1R' 
r=l r 

(7.5) 

where h is the time interval between samples, Ri is the estimate of the 

auto-correlation function at lag r, m is the maximum lag number, f, = 

1/2h is the cut-off frequency, and @i(f) is the raw estimate of true 

value $x(f) at frequency f. Equation 7.5 is a discrete approximation to 

the theoretical relation of Equation 7.1. For this method, the discrete 

frequencies are given by 
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kfC 
f=m 

k = 0, 1, 2, 9.. m (7.6) 

The FFT is computed as follows. The direct Fourier transform 

method is used to compute estimates of power spectral density functions 

directly from the original data value. This method has been used 

throughout most of this report. A raw estimate of the power spectral 

density function, $;(f), at any frequency f is given by the formula 

‘qf) = +IX(f,T)/2 

Here, T is Nh and 

X(f,T) = h Ni1 
n=O 

xn exp(-i2nfnh) 

At the usual FFT discrete frequency values 

k fRZTZ& k = 0, 1, 2, l .= N-l 

the Fourier components are defined by 

X(fk,T) N-l 

'k = h = n=O 1 'n exp[-i y] 

Hence, the power spectrum estimate becomes 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

(7.11) 

The following steps were used to compute power spectra estimates 

via the FFT procedures. Assume that the sample size for the data 

sequence xn is initially of arbitrary size N. 

1. Truncate the data sequence or add zeros so that N = 2'. 
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2. Taper the resulting sequence using the cosine taper data 

window or some other appropriate tapering. 

3. Compute the 

xk = 
x(fk,T) N-l 

h = nLo x, exp k = 0, 1, .** N-l 

using the FFT method. 

4. Compute the $;( of Equation 7.11 for k = 0, 1, l .= N-l. 

5. Adjust these estimates for the scale factor due to taper- 

ing. (Example: By replacing $I; by (1/0.875)$k if the 

cosine tapering is used.) 

Steps 2 and 5 were not used in the present report since N is rela- 

tively large and, as shown later, no significant effect was observed 

between tapered and untapered spectra. 

The discrete frequency of the two computational 

above are not the same for the same k, except when N 

methods described 

= 2 m. In the FFT 

method, adding zeros (Step 1 above) affects the discrete frequency value. 

The usual spacing is given by 

1 
Af = oh (7.12) 

If zeros are added to a data sequence, the spacing of the estimates 

become 

Af' = 
&lpi 

(7.13) 

where NZ represents the number of added zeros. Thus, comparing 4(f) 

values computed by the two different methods at frequency values corres- 

ponding to k are only in agreement if N = 2 m. In computing Figure 7.1 
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Figure 7.1. Power spectral density function calculated by the standard 
method (Equation 7.5). 
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by the power spectral density function by the standard method, the time 

history was divided into 10 segments of 1024 datum points each. These 

1024 datum points were introduced into Equation 7.5 to calculate each of 

the 10 spectra and the 10 segments were ensemble averaged to give the 

smoothed spectrum value. Figure 7.2 shows the power spectral density 

function calculated by the FFT method. The same segment averaging 

procedure was employed. Comparison of Figure 7.1 and Figure 7.2 indi- 

cates that the spectrum in Figure 7.1 is slightly larger than that in 

Figure 7.2 at low frequency. For higher frequencies, the spectrum in 

Figure 7.1 is less than that of Figure 7.2. This difference, however, 

is certainly negligible. Thus because of the significant saving of 

computer time associated with the FFT method, it was used throughout 

this study. 

In using the FFT method, the tapering window was found to not have 

a significant effect on the result. Figure 7.3 shows the spectrum cal- 

culated with a cosine taper data window. Comparison of this figure with 

Figure 7.2 shows no noticeable difference in the spectrum. 

As mentioned earlier, smoothing was accomplished by segment aver- 

aging for all spectra. The smoothing procedure is carried out as 

follows. The original time record, Tr, is divided into q separate time 

slices, where each time slice is of length T;; therefore, Tr = q*Ti. 

The smooth spectrum is given by 

(7.14) 

where $;C,q is the raw spectrum at frequency fk of the qth time slice. 
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Figure 7.2. Power spectral density function calculated by the FFT 
method without using a tapering window. 
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Ficjure 7.3. Power spectral density function calculated by the FFT 
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94 



The bandwidth Be for this approach becomes l/Tr!,. Thus the degree 

of freedom is n = 2BeTr = 2q. The normalized standard error, E,, is 

then given by 

(7.15) 

Therefore, the larger the value of q, the smaller the normalized stan- 

dard error. In the present study, the FFT paraments are given by 

h = 0.1 second; fc = 1/2h = 5 cycles/second; q = 10 

Tr = 1024 seconds; T; = T,/q = 102.4 seconds; N = T,/h = 10240 

Thus, 

Be = l/T,!, = 0.00977 cycle/second 

and 

0.316 

This gives an rms error of approximately 32 percent for all spectra 

presented. 

B. Spectra Correlation Models 

Several semi-mathematical models have been suggested to describe 

the power spectral density of the three turbulence gust components. 

Notable among these are the von Karman, Dryden, and Kaimal. von Karman 

(1961) suggested the following forms of the one-dimensional spectrum 

function, 9, for each velocity fluctuation component: 
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2L 

$w (K) = 0; 
wX 1 - 

X X ' [l + (l.339Lw K)2]5'6 
X 

4w (K) = 0; 
LW 
+ 

1 + 8/3(1.3391_, K)2 
Y 

Y Y [1 + (l.339LwyK)2]11'6 
(7.16) 

+w (K) = 0; 
LW 

1 + 8/3(1.339LwZK)2 

- 
Z Z " [1 + (l.339Lw K)2]11'6 

Z 

where the subscripts wx, w 
Y 

, and wz represent longitudinal, lateral, and 

vertical fluctuations, respectively. u is the standard deviation or rms 

value; L is the integral length scale; K is the wave number, 2rf/J; and 

a is the mean wind velocity at the height, z. von Karman's spectra 

functions are specifically for isotropic, homogeneous turbulence. For 

spectra measured at the higher levels, i.e., Level 4, reasonable agree- 

ment may be expected with the data. However, near the ground and in the 

vicinity of the building it is not likely that the spectra correlations 

will agree with experiment. Thus,the results in Subchapter C are pre- 

sented only for Level 4. 

Dryden (1961), on the other hand, suggested that the shape of the 

velocity correlation curve can be approximated by an exponential func- 

tion. In this case, the one-dimensional Dryden spectra become: 

2LW 
$,(K)=o; 2 ' 

X X IT 1 + L; K2 
X 

(7.17a) 
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LW 
1 + 3L2 K2 

9, (K) = a2 + wY 

Y "Y (1 + L; K2)2 
Y 

LW 
1 + 3L2 K2 

"; (K) = o; wZ - 
Z Z Tz (1 I- L; K2)2 

Z 

(7.17b) 

(7.17c) 

These spectra, although receiving considerable use because of their 

simpler form, are normally reported as not representing atmospheric data 

well. However, as shown in Subchapter C, depending on the choice of 

length scale, reasonable agreement is shown for data from Run #8624. 

In a recent series of papers describing the spectral properties of 

atmospheric turbulence over a flat homogeneous field site, Kaimal (1973) 

shows for stable conditions that with appropriate nondimensionalization, 

the spectra can be correlated with a universal curve having the empir- 

ical formula 

4 t4-f) = 
0.164(nho) 

(7.18) 
u 1 + 0.164(n/n0)5'3 

where f is frequency in cycles/second, n = fz/V is the reduced fre- 

quency, z is height above level terrain, and 11, is a scaling parameter 

related to the prevailing atmospheric stability. Frost et al. (1978) 

suggest the extension of this relationship to neutral conditions by 

specifying reduced frequency scaling factors of: 

n ow = 0.0144 
X 
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n ow = 0.0265 
Y 

(7.19b) 

n ow = 0.0962 
Z 

(7.19c) 

Frost (1980) later found these values to vary slightly with height. 

The Kaimal model, in effect, uses height z above level terrain as 

a length scale. The von Karman and Dryden models employ derived length 

scales. Normally the integral length scale, Method 1 of Chapter V, is 

used. However, as also shown in Chapter V, several other analytical 

forms of the Length scale have been suggested. The von Karman and 

Dryden spectra models show strong dependence on length scale, and con- 

siderable disagreement exists as to the best model of L to use. Sub- 

chapter C makes comparison of the data with the spectra using different 

length scales and presents some conclusion regarding the best value. 

C. Results and Comparison with Correlation Models 

This subchapter presents only spectra computed for the upper tower 

levels, Level 4, for both Runs #8623 and #8624. This level is expected 

to be least affected by the presence of the block building in the flow 

field. Spectra at Level 4 for both the longitudinal and vertical wind 

speed fluctuations are presented. Turbulence spectra plotted as log 

$(f) versus log (f) for the longitudinal component at all towers and 

levels are given in Appendix D. 

The computed spectra in this subchapter are plotted in normalized 

form, i.e., 

G 
'ij 

(f) = f$ 
'ij 

(f)/( 
ij 
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versus n = fz/W. In comparing the correlation models with the data, 

LK is written as LZnf/W = (ZrL/z)(fz/m = n/n0 where n, = z/2nL. 

Before comparing the correlation models with the data, some general 

characteristics of the data are pointed out. Figures 7.4 and 7.5 show 

typical spectra for Tower 1 at Level 4 for Runs #8623 and #8624, 

respectively. Both spectra tail-off at high reduced frequency (2 > n > 

4) to an approximate slope of -2.9 (i.e., $(f) = fm3*'), suggesting the 

end of the inertial subrange and the beginning of the viscous dissipa- 

tion range. Interestingly, however, at low reduced frequencies (n < l), 

the data for Run #8623 have a slope of -2/3 (i.e., +(f) = fB5j3) and for 

Run #8624 a slope of -1 (i.e., 4(f) = fm2). Thus, in the inertial 

subrange, the data for Run #8623 best fit a van Karman or Kaimal spectrum; 

whereas, the data for Run #8624 best fit a Dryden spectrum. The explana- 

tion for this is not clear. The building is not expected to affect 

these results because measurements at Tower 1 Level 4 should be essen- 

tially undisturbed by the block building. Moreover, inspection of 

Figures 3.2 and 3.3, pages 31 and 32, show that the wind for each run 

approaches over similar terrain. Thus, terrain effects should not be 

a factor. Finally, although the atmospheric stability is unknown, it 

is generally not reported to affect the slope of the spectra in the 

inertial subrange. Moreover, at the high mean wind speeds (approxi- 

mately 7.2 m/s at Level 4 for Run #8623 and 5.9 m/s for Run #8624), the 

atmospheric boundary layer is expected to be close to neutral for both 

runs. 

Figures 7.6 through 7.9 and Figures 7.10 through 7.13 compare the 

three analytical spectra models (von Karman, Dryden, and Kaimal) with 
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Figure 7.4. Characteristic slope of spectra is -2/3 at L4 for Run #8623. 
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Figure 7.5. Characteristic slope of spectra is -1 at L4 for Run #8624. 
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Figure 7.6. Comparison of longitudinal turbulence spectrum with three 
correlation models. (The length scale is calculated by 
Method 1, Chapter V, Run #8623). 
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Figure 7.7. Comparison of longitudinal turbulence spectrum with 
three correlation models. (The length scale is calculated 
by Method 2, Chapter V, Run #8623). 
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Figure 7.8. Comparison of longitudinal turbulence spectrum with 
three correlation models. (The length scale is calculated 
by Method 3, Chapter V, Run #8623). 
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Figure 7.9. Comparison of longitudinal turbulence spectrum with 
three correlation models. (The length scale is calculated 
by Method 4, Chapter V, Run #8623). 
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Figure 7.10. Comparison of longitudinal turbulence spectrum with 
three correlation models. (The length scale is 
calculated by Method 1, Chapter V, Run #8624). 
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Figure 7.11. Comparison of longitudinal turbulence spectrum with 
three correlation models. (The length scale is 
calculated by Method 2, Chapter V, Run #8624). 
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Figure 7.12. Comparison of longitudinal turbulence spectrum with 
three correlation models. (The length scale is 
calculated by Method 3, Chapter V, Run #8624). 
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Figure 7.13. Comparison of longitudinal turbulence spectrum with 
three correlation models. (The length scale is 
calculated by Method 4, Chapter V, Run #8624). 
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the experimentally computed spectra for Tower 1 Level 4, Runs #8623 and 

#8624, respectively. Each figure illustrates the analytical spectrum 

based on length scales calculated by the four different methods 

described in Chapter V. Notice that the Kaimal spectrum is the same in 

each figure since it is based on height above level terrain as a length 

scale, which remains constant. In general, the von Karman spectrum fits 

the data for Run #8623 quite well in the inertial subrange when based on 

a length scale calculated either by Method 3 or Method 4. For these 

length scales, the von Karman spectrum essentially coincides with the 

Kaimal spectrum in the inertial subrange. The von Karman spectrum, 

however, generally shows a higher peak value than the Kaimal. On the 

other hand, the data in all cases do not show a peak; in fact, there 

is no apparent knee in the experimental data. This implies that more 

energy is contained in the low-frequency range of the experimental 

results than predicted by the analytical models. The peak in the 

analytical spectra occurs in the range 0.055 > n 7 0.032. As noted 

earlier, the data for Run #8623 does not fit the Dryden spectrum well 

regardless of the method for calculating length scale. 

Directing attention to the four curves, Figures 7.10 through 7.13, 

for Run #8624, however, one sees that the Dryden curve shows better 

agreement with the data in the inertial subrange than either of the von 

Karman or Kaimal spectra. The length scale computed by Method 4 results 

in the best fit of the Dryden spectrum with the data. The Dryden spec- 

trum, based on a length scale computed by Method 3, fits the data 

reasonably well but gives low values for the magnitude for G(n). Once 

again the data show considerably higher energy levels at low frequency 
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than predicted by the analytical spectra. It is quite apparent from 

inspection of Figures 7.10 through 7.13 that the von Karman and Kaimal 

spectra do not fit the data-for Run #8624. They have an incorrect slope 

in the region which would typically be the inertial subrange. 

Length scales computed by Method 4 best correlate the experimental 

spectra for both the van Karman and Dryden spectra models in the respec- 

tive cases where they agree with the data. Therefore, L4 was used as 

the length scale for comparing the analytical models with spectra at 

other towers. Figures 7.14 through 7.19 compare the three analytical 

correlation models with data at Level 4 but different tower positions. 

In general, the von Karman and Kaimal spectra agree well with data from 

Run #8623, and similarly the Dryden model agrees with the data from Run 

#8624. In practically all cases for Run #8623, however, the analytical 

spectra tend to show lower values than indicated by the data. That is, 

the correlations fall below the major data in the inertial subrange. 

This is not true for the data of Tower 1 and less apparent for the data 

of Tower 5 than for Towers 2 and 4, respectively. The Dryden spectra 

surprisingly show good agreement in the inertial subrange for all cases. 

Although the upper levels of the towers were not expected to be influ- 

enced by the building, the results suggest that the presence of the 

building has added energy to the turbulence. This results in higher 

values of G(n) than predicted by analytical spectra models, which are 

based on atmospheric boundary flow over uniform, homogeneous terrain. 

For flow parallel to the major axis of the building (Run #8623), the 

presence of the building seems to add energy at low frequencies but does 

not influence the spectral content at high frequencies. For flow 
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Figure 7.14. Comparison of longitudinal turbulence spectra with three 
analytical- models. 
Method 4, T2). 

(The length scale is calculated by 
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Figure 7.15. Comparison of longitudinal turbulence spectra with three 
analytical models. (The length scale is calculated by 
Method 4, T4). 
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Figure 7.16. Comparison of longitudinal turbulence spectra with three 
analytical models. (The length scale is calculated by 
Method 4, T5). 
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Figure 7.17. Comparison of longitudinal turbulence spectra with three 
analytical models. (The length scale is calculated by 
Method 4, TZ). 
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Figure 7.18. Comparison of longitudinal turbulence spectra with three 
analytical models. (The length scale is calculated by 
Method 4, T4). 
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Figure 7.19. Comparison of longitudinal turbulence spectra with three 
analytical models. (The length scale is calculated by 
Method 4, T5). 
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perpendicular to .the building (Run #8624), the presence of the building 

increases energy at low frequencies and changes the structure of the 

distributions with frequency at higher values. That is, it makes 

the turbulence more Dryden-like and thus character.istic of wind tunnel 

turbulence. 

Figures 7.20 through 7.25 show the same comparison of theory with 

experimental data for the vertical velocity component as described 

earlier for the longitudinal component. The analytical curves for three 

different length scales are compared with the data from Tower 1, Level 

4, in Figures 7.20 through 7.22 (Run #8623) and in Figures 7.23 through 

7.25 (Run #8624). Again the Kaimal spectra does not change with length 

scale and is the same on all figures. Very little, if any, agreement with 

the theory is demonstrated by the data. The experimental results tend 

to have some anomalous variations at low frequencies. As discussed in 

Appendix D, this may be associated with a harmonic oscillation in the 

vertical data or with a lag in the propeller anemometers when reversing 

direction suggested by inspection of the time histories for vertical 

velocities (see Appendix B) which appear to be chopped. Harmonic oscil- 

lation will create a spike in the data, and one appears at a value of n 

roughly between 0.02,2 and 0.032. This spike, if real, represents a 

harmonic period of 130 to 190 seconds. Further study of these data is 

needed to resolve the reliability of the data and to develop empirical 

correlations which will provide a better prediction of the data than 

given by the existing correlation. 

Finally, Figures 7.26 through 7.31 show vertical velocity spectra 

for Towers 2, 4, and 5 for Runs #8623 and #8624, respectively. In these 
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Figure 7.20. Comparison of vertical turbulence spectrum with three 
correlation models. (The length scale is calculated by 
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Figure 7.21. Comparison of vertical turbulence spectrum with three 
correlation models. (The length scale is calculated by 
Method 2, Chapter V, Run #8623). 
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Figure 7.22. Comparison of vertical turbulence spectrum with three 
correlation models. (The length scale is calculated by 
Method 3, Chapter V, Run #8623). 
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Figure 7.23. Comparison of vertical turbulence spectrum with three 
correlation models. (The length scale is calculated by 
Method 1, Chapter V, Run #8624). 
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Figure 7.24. Comparison of vertical turbulence spectrum with three 
correlation models. (The length scale is calculated by 
Method 2, Chapter V, Run #8624). 

123 



RUN- 8624 
TOWER= 1 
LEVEL= 4 
COMPONENT= 3 

Von Karman 
- - - Dryden 
-.- Kaimal 

1 

0 

c 
-e 

Q 

3- a 
0-l 
0 - -1 

d 

-2 \ ‘< 

-3 
I I Illlll~ I ‘1111111~ l I111111 

-3 -2 -1 0 1 2 

log 11 

Figure 7.25. Comparison of vertical turbulence spectrum with three 
correlation models. (The length scale is calculated by 
Method 3, Chapter V, Run #8624). 
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Figure 7.26. Comparison of vertical turbulence spectrum with three 
correlation models. (The length scale is calculated by 
Methods 1 and 3, Chapter V, T2, Run #8623). 
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Figure 7.27. Comparison of vertical turbulence spectrum with three 
correlation models. (The length scale is calculated by 
Methods 1 and 3, Chapter V, T4, Run #8623). 
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Figure 7.28. Comparison of vertical turbulence spectrum with three 
correlation models. (The length scale is calculated by 
Methods 1 and 3, Chapter V, T5, Run #8623). 
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Figure 7.29. Comparison of vertical turbulence spectrum with three 
correlation models. (The length scale is calculated by 
Methods 1 and 3, Chapter V,T2, Run #862&l). 
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Figure 7.30. Comparison of vertical turbulence spectrum with three 
correlation models. (The length scale is calculated by 
Methods 1 and 3, Chapter V,T4, Run #8624). 
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Figure 7.31. Comparison of vertical turbulence spectrum with three 
correlation models. (The length scale is calculated by 
Methods 1 and 3, Chapter V, T5, Run #8624). 
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plots, the von Karman and Dryden spectra are computed both for length 

scales L, and L3, respectively. In general, these spectra show poor 

agreement with the experimental results. Of all the analytical models, 

however, the Kaimal spectra more closely resembles the data. It is not 

unexpected that the vertical spectra depart from the predicted results 

of an isotropic, homogeneous turbulence model near the ground due to the 

fact that the vertical downward velocity must decay to zero at the 

surface. The Kaimal spectra were, however, measured with towers of 

approximately the same height as those used in this study, and it was 

anticipated that better agreement with the Kaimal spectra would be 

observed. Further study of the results is needed, however, to resolve 

this anomaly between the experimental results and the analytical models. 
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CHAPTER VIII 

TWO-POINT SPECTRUM ANALYSES 

The two-point spatial spectrum is discussed in this chapter. The 

theory is initially reviewed, then the analytical model for the two- 

point spectrum proposed by Houbolt and Sen (1972) is described. Note 

that Houbolt and Sen refer to the two-point spatial spectra as the 

cross-spectra. In this report cross-spectra refers to a spectral corre- 

lation between different velocity components rather than between like 

components separated in spatial position. In the present terminology, 

the results reported in this chapter are two-point auto-spectra. 

Analytical models and measured data are compared in Subchapter C. 

Finally, the lateral coherence of the longitudinal velocity component is 

presented in Subchapter D and compared with theoretical models. 

As shown in Chapter II, the two-point spectra play an important 

role in determining the rolling and pitching moments due to spatial varia- 

tion in turbulence over an airfoil. The major thrust of the NASA B-57 

gust gradient program is to gather spatial turbulence data at altitude. 

The thrust of this study is to utilize the tower array to measure 

spatial turbulence variation at ground level. In general, the two-point 

spectra calculated for Run #8623 are representative of turbulence distri- 

bution across an airfoil, in view of the fact that the wind is perpen- 

dicular to the array. The data from Run #8624 are representative of wind 

along the body of the aircraft; for example, similar to the longitudinal 

component of the wind when the airplane is flying into the wind. The 

results show, in general, that the analytical two-point spectrum model 
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proposed by Houbolt and Sen (1972) is sensitive to the length scale 

model; also, it does not predict the high turbulence kinetic energy at 

the low frequencies observed in the experimental data. 

A. Theory 

Similar to the one-point auto-spectra discussed in Chapter VII, the 

two-sided spatial spectrum density function is calculated by the Fourier 

transform of the two-point time-dependent spatial correlation function, 

as follows 

Sxyb,f) = f Rxy(s.T)e-i2nfrdr (8.1) 

where s is the spatial separation distance between the stations at which 

x(t) and y(t) are measured. The two-point spatial correlation function, 

however, is not an even function; therefore, the spectrum density 

function is genera lly a complex number. 

For the one-s ided two-point space-time spectrum 

$xy(s,f) = 2 1 Rxy(s,T)e-i2rf'dr = Cxy(s,f) - iQxy(s,f) 63 

ity 

-co 

where the real part, Cxy(s,f), is called the coincident spectral dens 

function and the imaginary part, Qxy(s,f), is called the quadrature 

spectral density function. 

There are two methods to calculate two-point spectrum, the standard 

method is computed as follows. For two time histories, x(t) and y(t), 

which are stationary in time with x = y = 0, raw estimates for Ciy(f) 

and Q;,(f) (where s has been dropped for convenience), are 
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m-l 
+ 2 1 A; cos 

r=l 
+ A; cos 

2 mil BL sin [p] 
r=l C 

(g.3) 

(W 

where 

A; = Aiy(rh) = i[Riy(rh) + Rix(rh)] 

B; = Biy(rh) = i[Riy(rh) - Rix(rh)l 

RAY and Rix are the estimates of the two-point correlation function at 

lag r, h is the time interval between samples, m is the maximum lag 

number, fc is the cut-off frequency. For this method, the discrete fre- 

quencies are given by 

kfC f=y k = 0, 1, .*. m (8.5) 

The second method of computation is direct Fourier transform of the 

original data values x(t) and y(t). A raw estimate of the two-point 

spectrum density function, $Ay(f), at any frequency f is given by the 

formula 

+;y(f) = F X[ Yk 
I I (8.6) 

where Xc is the complex conjugate of Xk' 

The following steps were used to compute the two-point spectral 

density function via the FFT procedures in this report. Assume that 

the sample size for each of the two data sequences x, and y, is initially 

the arbitrary size N. 
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1. Truncate the two data sequences or add zero so that each 

sequence has N = 2' data values. 

2. Taper the two resulting sequences using the cosine taper 

window, or some other appropriate tapering. 

3. Store the tapered x, in the real part and the tapered y, 

in the imaginary part of the complex variable zn = x, + iy,, 

n = 0, 1, 0.0 N-l. 

4. Compute the N-point FFT giving the zk for k = 0, 1, ..= N-l, 

using the FFT procedure. 

5. -Compute xk and yk for k = 0, 1, l .a N-l, 

X(k) = ; [Z(k) + Z*(N - k)] 

Y(k) = & [Z(k) - Z*(N - k)l 

(8.7) 

(8.8) 

where Z* is the complex conjugate of Z. 

6. Compute the raw cross-spectral density estimate $Ay(fk) for 

k = 0, 1, l == N-l, and fk = k/(Nh) by Equation 8.6. 

7. Adjust these estimates for the scale factor due to tapering, 

i.e., by replacing +xy by (l/0.875)$Ay if the cosine taper- 

ing is used. 

8. Finally, obtain smooth estimates by either frequency smooth- 

ing or segment averaging. 

Note in this study, Steps 2 and 7 were not used since N is relatively 

large and the results showed little difference with or without tapering. 

Similar to the power spectrum, the normalized standard error, E,, 

is given by 
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In the present study, the FFT parameters are given by h = 0.1 second; 

f, = 1/(2h) = 5 cycles/second; q = 10 T, = 1024 seconds; TA = 102.4 

seconds; N = 10,240. Thus, the band error Be is 

Be = l/T; = 0.00977 cycle/second 

and 

Er = m = 0.316 

This gives an rms error of approximately 32 percent for all of the two- 

point spectra presented. 

B. Two-Point Spectrum Analytical Model 

Houbolt and Sen (1972) analytically developed a model of the two- 

point spectrum function from the von Karman spectrum for both vertical 

and longitudinal turbulence. The longitudinal two-point analytical 

expression is given by: 

4 
2 c513 

w w (<,?I> = 0.3889784 aW - 
xx x B5/6 K5/6(B) 

where 

;1 = 2TrfL 

w 

5 = s/L 

(8.9) 

For vertical component turbulence the expression is 
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cp w w (r,fi) = 0.01853 o2 W 4.78 '5'3 B5/6 K5/6(B) - $i K11,6(B)} (8.10) 
XY Z 

where K5,6 and Kll,6 are modified Bessel function of the second kind of 

order 5/6 and 11/6, respectively. 

C. Comparison of Analytical Model with Experimental Results 

Figures 8.1 through 8.3 for Run #8623 and Figures 8.4 through 8.6 

for Run #8624 compare the experimental data with the analytical model of 

Houbolt and Sen (1972). The theoretical model is computed using both 

the length scale by Method 1 and the length scale by Method 3. Figures 

8.1 and 8.4 contain experimental results for three separation distances. 

The separation distances are the distance between Tower 1 and Tower 2, 

Tower 1 and Tower 4, and Tower 1 and Tower 5 at Level 4, respectively. 

Figures 8.2 and 8.5 show similar results; however, in this case, there 

are only two separation distances between Tower 2 and Tower 4 and Tower 

2 and Tower 5. Finally, Figures 8.3 and 8.6 show the results for Tower 

4 with one separation distance Tower 4 to Tower 5. All data are for 

Level 4. 

In each figure, the log of the cross-spectra, $, U , is normalized 
ij ka 

with the product of the standard deviation at each tower position, au 
ij 

"kL' 
versus the log of the frequency times separation distance divided 

by the mean wind speed, fs/W. In general, the analytical curves do not 

fit the data particularly well. In most cases, the data essentially 

follow a straight line which does not show the characteristic knee in 

the curve as predicted by the theory. Also, the slope of the experi- 

mental data does not agree with the slope of the theoretical curve. In 
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Figure 8.1. Comparison of computed two-point spatial s ectra with the 
theoretical model of Houbolt and Sen (1972 P (Run #8623, 
L4, Component 1). 
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Figure 8.5. Comparison of computed two-point spatial spectra with the 
theoretical model of Houbolt and Sen (1972) (Run #8624, 
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Figure 8.6.. Comparison of computed two-point spatial spectra with the 
theoretical model of Houbolt and Sen (1972) (Run #8624, 
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all cases,the experimental data show much higher energy in the low 

frequency level than predicted by the analytical model. 

It is apparent from these results that the assumption of isotropic 

turbulence is not valid near the ground. Empirical models correlating 

the experimental results are needed. Also,the data are stratified 

according to separation distance. For values of s/L increasing in 

magnitude,the data show more significant energy at a given value of 

f s/K In addition to the isotropic assumption inherent in the analytical 

model, there is another assumption in the development of the two-point 

spatial spectra for the longitudinal velocity component that may cause 

disagreement with the data. 

Houbolt and Sen (1972), in developing their spectrum expression, 

began with the von Karman correlation function (see Chapter VI). In 

their analysis,the separation distance was 5, shown in Figure 2.4, page 

20, and the correlation was taken between w,(x,y) and w,(x+g,y+n). The 

theoretical von Karman correlation, however, is based on w,(x,y) and 

wp(w+<,y+n) for the longitudinal correlation and w,(x,y) and w,(x+6,y+n) 

for the lateral correlation. The author believes that Houbolt and Sen 

(1972) should have begun their analysis with Equation 2.35, page 19. 

Thus, the disagreement between theory and experiment for the case of the 

longitudinal velocity component may be, in part, due to this assumption. 

Figures 8.7 through 8.13 show the same comparison of theory with 

results for the vertical velocity component. In this case, slightly 

better agreement with the data and theory is obtained; however, the 

agreement is still not good. The better agreement is demonstrated by 

the fact that the data tend to take on a slope similar to the analytical 
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Figure 8.10. Comparison of computed two-point spatial spectra with the 
theoretical model of Houbolt and Sen (1972) (Run #8624, 
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Figure 8.11. Comparison of computed two-point spatial spectra with the 
theoretical model of Houbolt and Sen (1972) (Run #8624, 
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models at higher frequencies and begin to show a "knee" at lower 

frequencies. 

It is readily apparent, however, from comparing the experimental 

results with the analytical model that the assumption of isotropic, 

homogeneous turbulence near the surface of the earth is not valid. 

Design analysis based on isotropic analytical models of two-point 

spatial correlations may, thus, provide spurious results. In general, 

the analytical curves tend to predict more energy in the higher frequen- 

cies than the experimental data show. On the other hand, at the lower 

frequencies,the data generally contain considerably more energy than is 

predicted by the analytical model. Again, the results of the comparison 

are highly sensitive to the length scale. For the integral length scale 

(Method 1), which is the typical method of computing length scales used 

in the literature, higher values of the two-point spatial spectra are 

predicted at higher frequencies than are demonstrated experimentally 

and lower values at lower frequencies. The analytical model based on 

length scale computed by Method 3 tends to pass through the data at 

higher frequencies and, in some cases, fits the data reasonably well. 

It should be observed, however, that in all cases, the analytical 

curves representing different separation distances cross one another 

near the knee of the curve. Similar crossing of the experimental data 

is not shown at all by the experimental results. It is apparent that 

additional analysis of the data is required to establish meaningful 

design criteria that represents the experimental results and can be 

applied to calculations of rolling and pitching moments as described 

in Chapter II. 
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D. Coherence Function 

The coherence function is a two-point spatial spectrum normalized 

by the product of the one-point spectra at the separation points. Thus, 

the coherence function is an expression of the correlation or coherence 

between fluctuations of the individual frequencies. 

Davenport (1961) suggests the coherence between wind velocity 

components in the atmospheric surface layer is generally expressed by 

Y2h) = exp(-an) (8.11) 

where a is a nondimensional parameter called the decay parameter, n is 

defined as before by sf/v, and v-is the average mean wind speed between 

the two measuring positions. Because the decay parameter, a, depends on 

many factors, Pielke and Panofsky (1976) generalized Equation 8.11 by 

(8.12) 

where the first subscript represents the direction of the velocity com- 

ponent (1 = longitudinal, 2 = lateral, and 3 = vertical) and the second 

subscript represents the direction of separation of the measuring sta- 

tions. For the longitudinal wind component and longitudinal separation, 

I Ropelewski et al. (1973) suggests that the coherence should decrease 

with travel time according to 

(8.13) 

where T is the eddy decay time which is of order ?Jaw , x is an eddy of 

size associated with frequency f and can be written a: x = W/f, and t = 

s/v is the time it takes the eddy to be advected downstream. With these 
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estimates and the definition of the nondimensional frequency, the 

expression for the coherence becomes 

rf,h) = exp[- F+] = exp[- > n] (8.14) 

Thus,the decay parameter for the longitudinal wind component for longi- 

tudinal separation may be written as 

where c is an undetermined constant to be evaluated by experiment; 

therefore, the longitudinal coherence decay parameter, a,,, is strongly 

dependent on roughness. 

For the lateral separation and the longitudinal wind component, 

there is no lag time involved, and the coherence may be written in com- 

plete analogy with Davenport's expression as 

(8.15) 

where L, and L, are integral length scales (Method 1, Chapter V) com- 

puted fr"om 
Y 

R, w and R 
"Y"Y 

, respectively, and c is an unknown nondimen- 
x x 

sional constant. The ratio of the length scale is a function of 

stability; therefore, the decay parameter al2 is a strong function of 

stability. 

The coherence function for the longitudinal velocity component 

separated laterally was computed for the data from the previously 
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discussed spectra. From curve fitting techniques, the decay parameter 

al2 was obtained. Figures 8.13 through 8.16 show the lateral coherence 

computed between different heights of towers for Levels 1, 2, 3, and 4, 

respectively. At the lower levels, the coherence is more scattered; .but 

in general, the decay parameter increases with decreasing height. 

Kristensen and Jensen (1979) report that al2 is approximately 14 at 

the 20-m level, whereas Panofsky et al. (1974) find al2 is approximately 

12 for neutral boundary layer conditions. The value of al2 for the 

present data is approximately 10.3 at the 20-m level. They also suggest 

that the decay parameter al2 is a function of height and separation 

distance in isotropic turbulence. Thus, 

a12 _ 18[=b]“.26 
( 1 6 

0.13 (8.16) 

where s is the separation distance and z is height. Figure 8.17 com- 

pares the decay parameter al2 from the measured data with Equation 8.16 

at different heights. At the 3-m level, the comparison is reasonable. 

The decay parameter is expected to be a function of separation distance, 

but at the 6-m and 12-m levels the decay parameter is scattered and shows 

no clear dependence on separation distance. At the 20-m level, the decay 

parameter appears to remain constant with separation distance. 

Table 8.1 lists the decay parameter al3 for the longitudinal 

velocity component separated in the vertical direction, which is approxi- 

mately 13.6. Brook (1975) reports al3 values of about 17 for a neutral 

boundary layer; whereas, Panofsky et al. (1974) report that al3 varies 
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Figure 8.13. The lateral coherence y:2 for the longitudinal velocity 
component at the 3-m level. 
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Figure 8.14. The lateral coherence yT2 for the longitudinal velocity 
component at the 6-m level. 
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Figure 8.15. The lateral coherence vi2 for the longitudinal velocity 
component at the 12-m level. 
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Figure 8.16. The lateral coherence vf2 for the longitudinal velocity 
component at the 20-m level. 
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TABLE 8.1. Decay Parameter al3 

Z max AZ Tl T2 T4 T5 

20 8 12.8 12.6 15.8 '14.2 

20 14 14.3 13.5 13.6 14.5 

20 17 12.7 12.1 12.0 17.6 

12 7 12.1 13.2 13.3 12.4 

12 9 12.1 14.5 15.7 14.0 

6 3 12.6 14.6 13.5 13.3 

from values of 30 during stable conditions to values less than 10 during 

unstable conditions. They report that al3 has a value of about 20 in 

neutral stratification. 

In general, the decay parameter al3 is reported to increase with 

increasing separation height, AZ, and decrease with increasing height, 

z max' In the present data,there is no obvious indication that al3 

depends on the separation distance AZ. 
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CHAPTER IX 

CONCLUSIONS 

Statistical analyses of the wind speed data measured with the 

eight-tower array for Run #8623 mean wind perpendicular to the array and 

Run #8624 mean wind parallel to the array have been carried out. Not 

all analyses possible with this gigantic data set have been carried out, 

but most of the analyses important to aeronautical applications have 

been made. 

Probability density distributions of the longitudinal and vertical 

components of the velocity at each tower and level were calculated. The 

probability density function of the turbulence data demonstrates, as is 

typical of atmospheric turbulence, a distribution of greater kurtosis 

than a Gaussian distribution. In turn, the vertical distribution behaves 

very strangely, which is possibly due to what appears to be a typical 

chopping of the velocity fluctuations in the time history records. 

The length scale of the turbulence was calculated by four different 

methods. Method 4, based on computing the length scale in terms of the 

frequency at which the computed turbulence spectrum has a maximum value, 

resulted in a length scale, which gave best comparison of theory with 

experimental results. Computed values of the length scale for Run #8623 

at the 20-m level ranged from 50 m to 250 m depending on the method of 

calculation. Whereas, for Run #8624, the average length scale ranged from 

40 m to 580 m. 

Two-point spatial correlation coefficients for each run have been 

computed for the longitudinal velocity components at each measuring 
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station. Two-point time-dependent velocity correlations have been 

computed for both the longitudinal and vertical velocities. These have 

been computed for various combinations of measuring stations, both 

vertically and horizontally spaced, but have not been computed for all 

possible combinations. Comparison with the theoretical models of von 

Karman and Dryden were carried out. The correlations show poor agree- 

ment with the theoretical models. This is not surprising in view of the 

fact that the models are based on isotropic homogeneous turbulence; 

whereas, the turbulence near the surface is highly nonisotropic. Also, 

the correlations are strongly dependent upon the length scale used. 

The length scale based on Method 4 gave good agreement at small lag 

times, less than 3 seconds; whereas, the correlations computed on length 

scale based on Method 1 gave better agreement at lag times in excess of 

2 to 3 seconds. 

One-point spectra for the longitudinal and vertical components for 

Level 4 on all towers for both runs have been compared with three 

separate analytical models. The agreement with the theoretical models 

is poor. This is not surprising for the von Karman model based on 

isotropic and homogeneous turbulence nor for the Dryden model based on 

mainly laboratory flows. It was anticipated, however, that better 

agreement with Kaimal's model would be shown by the data in view of the 

fact that it is an empirical formulation based on data measured with 

towers of approximately the same level as those used in the present 

study. As with the correlations, the theoretical spectral models are 

extremely sensitive to the choice of length scale. In general, when the 

spectra are computed with length scale based on Method 4, best agreement 
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with the data is achieved. The spectra for Run #8623 shows a short 

inertial subrange which has a slope of -5/3 as is generally reported for 

atmospheric turbulence. Surprisingly, the spectra for Run #8624 show a 

corresponding inertial subrange which varies as the -2 power showing 

best agreement with the Dryden spectrum model. This is unusual for 

atmospheric turbulence and is believed to be a terrain or an internal 

boundary layer effect. 

Two-point spatial spectra were also computed. The two-point 

spectra play an important role in the rolling and pitching moments due 

to spatial variation in turbulence over an airfoil. In general, the 

two-point spectra calculated for Run #8623 are representative of the 

turbulence distribution across the airfoil; whereas, the results of Run 

#8624 are representative of wind along the body of the aircraft. 

The results show, in general, that the analytical two-point spectrum 

model proposed by Houbolt and Sen (1972) is highly sensitive to the 

length scale and also does not predict the high-turbulence kinetic 

energy at the low frequencies observed in the experimental data. The 

vertical velocity two-point spatial spectra, however, show better 

agreement with the theory than the longitudinal component. It is appar- 

ent from the results that additional analysis of the data is required to 

establish meaningful design criteria which represent the experimental 

results and which can be applied to calcultions of aircraft rolling, 

yawing, and pitching moments. 

Coherence functions, which are the two-point spatial spectra normal- 

ized by the product of the one-point spectra at the separation points, 

were also computed. The results were found to compare (with the reported 
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exponential variation of the coherence function; the argument of the 

function being the separation distance scaled with reduced frequency). 

In general, however, the scatter in the data is quite large. In all 

cases, the lateral coherence of the longitudinal velocity components 

were computed. The decay parameter in the exponential correlation of 

the coherence function was found to increase with increasing altitude, 

but did not show the dependence on separation distance reported in the 

literature. 

Considerable data remains to be analyzed from this overall measure- 

ment program. Additionally, analyses of the results presented in here 

are required to adapt the experimental results into useful design 

criteria for aeronautical applications. 
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APPENDIX A 

DERIVATION OF EQUATIONS 2.18 AND 2.24 

A.1 Derivation of Equation 2.18 

The spectrum of lift, eL, is given by the Fourier transfer of RL(r) 

03 

$L(f) = 
f 

RL(T)e-i2rfrdr @.'I) 
-aI 

where from Equation 2.11 

a3 0) 
I I 

b/2 b/2 

RL(d = h&t, ht(t2) 
I f hy(yl )hy(y2) 

-00 -00 -b/2 -b/2 

xR wzwzCV( T+t 1 - tpL(Y2 - yl)ldqdy2 dtldt2 

therefore, 

OL(f) = ht(tl ht(t2) hy(yl )hy(y2) 
-co -b/2 -b/2 

xR wzwz[v( r+t -t),(y - 12 2 q )Idyldy2 dT 

(A.21 

Inserting the factor e 
i2nf(tl-t2)e-i2rf(tl-t2) 

= 1 gives 
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Now change the variable q = T + tl - t2 and d? = dT. 

(A.4) 

'+L(f) = H;(f)H$) j & 
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1 j hy(Yl)hy(Y2)Rw w [WY, - Yl)l 
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= IH&f)I 

where R, w (VG) 
z z 

Therefore, 

OJ 

2 
f 

Rw w (V?)e-i2rfrd+ (A.51 
z z -00 

is the effective correlation function along the wing. 

$L(f) = lHt(f)j2 iw w (f) (A.6) 
z z 

where 

4 wzwz(f) 
= 

I 
Rw w (VG)e-i2TfT T nd^ (A.7a) 

z z -03 
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iw w (f) = i 
zz I 

F?" w (E)e-i2'fg/Vdg 
z z -co 

(A.7b) 

where G is (T + t, - t2) and 5 = Vi. 

A.2 Derivation of Equation 2.24 

For axisymmetric turbulence, the correlation and spectrum can be 

expressed as 

R w w (WI) = 
z z 

R, w (d 
z z 

and 

4 w,w,(fl'f2) = @wzwz(f) 

VW 

(A.9 

where c2 = 52 t n2 and f2 = ff + f.$, respectively. From Equation 2.21 

co 03 

@ wzwz4.fp) = $ 
I f 

e 
-i2a(flS+f2n)/V 

R w w k,n)d<dn (A.lO) 
z z -02 -co 

(4 wzwz(f) 
1 

=v f f 
e-i2sfg cos (e-$)/V, 

w w (s)sdsde 
0 0 z z 

where 5 + in = ge ie 

fl + if2 = fei@ 

Then 

@ 
wzwz 

(f) = & 1 Rw w (5) 
0 z z 

2?T 

f 
,-iilTfc cos e/Vde 

0 
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APPENDIX B 

TURBULENCE TIME HISTORIES AND JUSTIFICATION 

FOR ELIMINATION OF SOME DATA 

Data measured at the tower position and level indicated in Table 

3.2, page 34, have been eliminated from the data set. These data are 

believed to be bad due to instrument malfunction. Tables B.l and B.2 

show mean values for the measured data. Inspection of these tables shows 

that for measuring stations TlLl, TlL2, and T2Ll for Run #8623 and TlL2 

for Run #8624 a much higher than realistic vertical component for flow 

near the surface was measured. Therefore, the vertical velocity data in 

this case are erroneous and have been omitted. This, however, does not 

influence the longitudinal and lateral velocity data and they are left 

in the data set. It is also observed that T3L2 has a higher vertical 

wind component for Run #8624. However, this is justifiable in view of 

the fact that this anemometer is immediately behind the building where a 

vertical flow exists due to the wake created by flow over the building. 

Further inspection of the tabulated data indicates that either the 

mean zonal wind component and/or the mean direction at stations T3L4, 

T5L1, T5L3, SlL3 (T6L3) for Run #8623 and T3L4 and T5L3 for Run #8624 

are inconsistent with the remainder of the data. Therefore, measure- 

ments at S4L2 (T8L3) do not correlate well with other results. Inspec- 

tion of the time history of the fluctuating components given in Figures 

B-1 through 8.54 for these measurements indicate that the measurements 

were seriously in error and that the anemometer was not working. There- 

fore, they have also been eliminated from the data set. Figures B.l 

173 

L - 



through B.54 are time history plots of the fluctuation components of the 

wind speed. The vertical scale is velocity in meters per second and the 

horizontal scale is time in seconds. In each figure the time history is 

plotted at the scaled level of the measurement station. The component 

number given in the caption designates the wind direction: Component 1 

is along the direction of the mean wind, i.e., longitudinal, wx; Compo- 

nent 2 is perpendicular to the mean wind, i.e., lateral, w 
Y 

; and Compo- 

nent 3 is vertical to the earth's surface, wz. 
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TABLE B.l. Mean Values for Test Run #8623 

Tower 

: 

; 

f 

2' 

3 

3" 
3 

1 
4 
4 

z 

z 
\ 

6 
6 '.a 

7 bC 

8( 

: ,d 
8 I 

Level 

: 

: 

: 

: 

1 
2 

i 

1 
2 
3 
4 

: 

3 

: 

t 

1 
2 

4" 

: 

: 

Mean Mean Mean Mean 
Zonal Meridional Scalar Direction 

-4.9406 
-5.7322 

6.7323 
-7.3635 

-4.2044 
-6.3918 
-6.5052 
-7.1013 

-1.0354 5.0479 78.1785 
-0.7237 5.7777 82.8202 
-1.0466 6.8132 81.1789 

0.1308 7.3647 91.0345 

Vertical 
Velocity 

2.7358 
3.9514 
0.1854 

-0.4789 

-1.2547 4.3877 73.3972 -1.2962 
-1.0856 6.4833 80.3759 -0.3243 
-0.0359 6.5053 89.7007 -0.1350 

0.9769 7.1682 97.8514 -0.1018 

-3.1094 3.0003 4.3209 134.0021 0.8810 
-6.1063 -1.9131 6.3990 72.6183 0.8744 
-6.8302 -0.7344 6.8696 83.8788 0.0959 
-0.0643 -6.7920 6.7923 0.5467 0.0396 

-5.3100 -0.4432 5.3285 85.2445 
-4.9962 -0.1094 4.9974 88.7624 
-6.5158 0.1633 6.5079 91.4551 
-6.9119 -0.6906 6.9768 84.2859 

-5.5352 1.7541 5.8065 107.6034 
-6.2623 0.6350 6.2944 95.8076 

0.0079 -6.7687 6.7687 360.0000 
-7.1130 0.4085 7.1247 93.3044 

0.0684 
0.2059 
0.1287 
0.2323 

o-i737 
-0.0630 
0.3037 
0.1849 

-3.7003 -0.7748 3.7811 78.1895 0.0883 
-4.7602 -0.6754 4.8879 81.9398 0.3508 
-0.9212 -5.5098 5.5063 9.4935 0.0914 
-3.4786 0.7634 3.5614 102.3962 -0.0202 

-4.3364 0.1141 4.3078 91.5070 0.6519 
-6.3344 0.1581 6.3364 .91.4471 0.5364 
-4.2900 0.0762 4.2907 91.0341 0.5756 
-5.0558 -0.2411 5.0616 87.2858 0.4841 

-5.9071 -0.5221 5.9301 84.9647 0.6191 
-4.6894 -0.2029 4.6938 87.5391 0.1167 
-5.2420 0.3515 5.2538 93.8532 0.0622 
-5.9079 0.8431 5.9678 98.1404 -0.0754 

"Short Tower 1. 

b Short Tower 2. 

'Short Tower 3. 

d Short Tower 4. 
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TABLE B.2. Mean Values for Test Run #8624 

Tower 

1 

: 
1 

2 
2 
2 
2 

3 
3 
3 
3 

1 
4 
4 

5 
5 
5 
5 

Level 

: 
3 
4 

: 

i 

1 
2 

3 

1 
2 

I 

1 
2 
3 
4 

1 
6" a 2 
6 
6 

) 
f 

7 'b 1 
7 ( 2 
7 
7 'C 3 

8{ 1 
8 2 

: 
pd 3 

4 

Mean Mean Mean Mean 
Zonal Meridional Scalar Direction 

2.0487 2.9895 3.6241 214.4623 
2.3735 3.4968 4.2263 214.2065 
2.5700 4.4788 5.1638 209.8875 
3.9871 4.7714 6.2179 219.9246 

Vertical 
Velocity 

0.0272 
4.8259 
0.1272 
0.2569 

1.9003 2.1630 2.6792 221.3415 0.2170 
2.8738 3.0276 4.1743 223.5492 0.5090 
3.2904 3.6659 4.9260 221.9519 0.4624 
3.6427 4.9111 6.2357 218.0823 0.2592 

0.0169 0.2914 0.2919 3.3279 0.0311 
2.0817 4.0728 4.5740 207.1117 1.0011 
2.5370 4.5621 5.2201 209.1173 0.1225 
2.7828 4.0849 4.9427 34.2704 0.0009 

0.9223 0.3413 0.9834 249.7402 
2.3095 3.2753 4.0077 215.2295 
3.2612 4.3579 5.4430 216.8496 
2.4891 5.2211 5.7841 205.5273 

3.2851 2.4210 5.0809 233.6546 
3.2226 3.4132 4.6941 223.3969 
0.0015 3.5265 3.5265 180.0093 
2.9834 4.4481 5.3559 213.8905 

0.0255 
0.1064 
0.1676 
0.0070 

O.lil9 
0.1622 
0.2154 
0.2271 

0.9096 1.0851 1.4159 220.0140 0.1513 
1.7511 2.2599 2.8590 217.8114 0.3075 
2.3261 3.1185 3.8905 216.7596 0.2740 
0.0408 0.4768 0.4786 355.1710 0.4562 

0.4594 0.2393 0.5180 297.5690 0.2601 
3.1289 3.6387 4.7990 220.7332 0.9213 
0.1628 0.6726 0.6920 346.4559 0.0126 
0.2682 0.0937 0.2841 250.7872 0.0452 

2.1279 3.3532 3.9714 212.4383 0.1263 
0.4505 0.2266 0.5043 296.7586 0.0909 
0.4531 0.5182 0.6884 221.2112 0.0166 
2.5293 2.7937 3.7686 222.1989 0.0049 

aShort Tower 1. 

b Short Tower 2. 

'Short Tower 3. 

d Short Tower 4. 
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Figure B.l. Time history of turbulent fluctuations. (Run #8623, Tl, 
Component 1). 
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Figure B.2. Time history of turbulent fluctuations. (Ru'n #8623,.T2, 
Component 1). 
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Figure B.3. Time history of turbulent fluctuations. 
Component 1). 

(Run #8623, T3, 
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Figure 6.4. Time history of turbulent fluctuations. (Run #8623, T4, 
Component 1). 
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Figure B.5. Time history of turbulent fluctuations. (Run #8623, T5, 
Component 1). 
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Figure 8.6. Time history of turbulent fluctuations. 
Component 1). 

(Run #8623, Sl, 
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Figure B.7. Time history of turbulent fluctuations. (Run #8623, S2, 
Component 1). 
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Figure B.8. Time history of turbulent fluctuations. (Run #8623, S3, 
Component 1). 
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Figure B.9. Time history of turbulent fluctuations. (Run #8623, S4, 
Component 1). 
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Figure B.lO. Time history of turbulent fluctuations. (Run #8623, Tl, 
Component 2). 
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Figure B.ll. Time history of turbulent fluctuations. (Run #8623, T2, 
Component 2). 
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Figure B.12. Time history of turbulent fluctuations. (Run.#8623, T3, 
Component 2). 
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Figure B.14. Time history of turbulent fluctuations. (Run #8623, T5, 
Component 2). 
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Figure B.15. Time history of turbulent fluctuations. (Run #8623, Sl, 
Component 2). 
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Figure B.16. Time history of turbulent fluctuations. (Run #8623, S2, 
Component 2). 
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Figure B.17. Time history of turbulent fluctuations. (Run #8623, S3, 
Component 2). 
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Figure B.18. Time history of turbulent fluctuations. (Run #8623, S4, 
Component 2). 
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Figure B.19. Time history of turbulent fluctuations. (Run #8623, Tl, 
Component 3). 
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Figure B.20. Time history of turbulent fluctuations. (Run #8623, T2, 
Component 3). 
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Figure B.21. Time history of turbulent fluctuations. 
Component 3). 

(Run #8623, T3, 
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Figure 8.22: Time histor 
Component 3 r 

of turbulent fluctuations. (Run-#8623, T4, 
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Figure B.23. Time history of turbulent fluctuations. (Run #8623, T5, 
Component 3). 
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Figure B.24. Time history of turbulent fluctuations. (Run #8623, Sl, 
Component 3). 
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Figure B.25. Time history of turbulent fluctuations. (Run #8623, S2, 
Component 3). 
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Figure 8.26. Time history of turbulent fluctuations. (Run #8623, S3, 
Component 3). 
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Figure 8.27. Time history of turbulent fluctuations. (Run #8623, S4, 
Component 3). 
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Figure B.28. Time history of turbulent fluctuations. (Run #8624, Tl, 
Component 1). 
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Figure B.29. Time history of turbulent'fluctuations. (Run #8624, T2, 
Component 1). 
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Figure B.30. Time history of turbulent fluctuations. (Run #8624, T3, 
Component 1). 
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Figure 8.31. Time history of turbulent fluctuations. (Run #8624, T4, 
Component 1). 
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Figure B.32. Time history of turbulent fluctuations. (Run #8624, T5, 
Component 1). 
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Figure 8.33. Time histor 
7 

of turbulent fluctuations. (Run #8624, Sl, 
Component 1 . 
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Figure B.34. Time histor 
Component 1 r 

of turbulent fluctuations. (Run #8624, S2, 
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Figure B.35. Time history of turbulent fluctuations. (Run #8624, S3, 
Component 1). 
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Figure B.36. Time history of turbulent fluctuations. 
Component 1). 

(Run #8624, S4, 

212 



Time Scale o' 200 Seconds 

Velocity Scale - 
0 1 2 3 M/S 

Figure B.37. Time history of turbulent fluctuations. (Run #8624, Tl, 
Component 2). 
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Figure B.38. Time history of turbulent fluctuations. 
Component 2). 

(Run #8624, T2, 
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Figure B.39. Time history of turbulent fluctuations. (Run #8624, T3, 
Component 2). 
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Figure B.40. Time history of turbulent fluctuations. (Run #8624, T4, 
Component 2). 
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Figure B.41. Time history of turbulent fluctuations. (Run #8624, T5, 
Component 2). 
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Figure B.42. Time history of turbulent fluctuations. (Run #8624, Sl, 
Component 2). 
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Figure B.43. Time history of turbulent fluctuations. (Run #8624, S2, 
Component 2). 
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Figure B.44. Time history of turbulent fluctuations. (Run #8624, S3, 
Component 2). 
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Figure B.45. Time history of turbulent fluctuations. (Run #8624, S4, 
Component 2). 
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Figure B.46. Time histor of turbulent fluctuations. (Run #8624, Tl, 
Component 3 7 . 
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Figure B.47. Time history of turbulent fluctuations. 
Component 3). 

(Run #8624, T2, 
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Figure B.48. Time history of turbulent fluctuations. (Run #8624, T3, 
Component 3). 
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Figure B-49. Time history of turbulent fluctuations. (Run #8624, T4, 
Component 3). 
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Figure B.50. Time history of turbulent fluctuations. (Run #8624, T5, 
Component 3). 
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Figure 8.51. Time history of turbulent fluctuations. (Run #8624, Sl, 
Component 3). 
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Figure B-52. Time histor of turbulent fluctuations. (Run #8624, S2, 
Component 3 f . 

228 



Time Scale o- 
200 Seconds 

Velocity Scale - 
0 1 2 3 M/S 

Time 

Figure B.53. Time histk of turbulent fluctuations. (Run #8624, S3, 
Component 3 r . 
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Figure 8.54. Time history of turbulent fluctuations. (Run #8624, S4, 
Component 3). 
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APPENDIX C 

PROBABILITY DENSITY FUNCTIONS FOR THE LONGITUDINAL, 

LATERAL, AND VERTICAL VELOCITY COMPONENTS 

The probability density functions for the longitudinal, lateral, 

and vertical velocity-components are given in this appendix. The 

results are compared with the theoretical Gaussian distribution curve 

represented by the solid line on the figures. The data for the vertical 

velocities, in most cases, have very anomalous behavior. The reason for 

this is not clear. 

Inspection of the time histories suggests that the propeller-type 

anemometers have a lag time when reversing direction. This effect is 

also apparent in the correlation functions shown in Appendix E. In the 

single-point spectra shown in Chapter VII and the two-point spectra 

shown in Chapter VIII, this effect is believed to be present as a spike 

in the data at fz/a = 0.024. This suggests a harmonic signal is present 

in the data with roughly a time period of 3 minutes. In future work, 

the possibility of filtering this effect will be studied. 
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Figure C.l. Probability density function for longitudinal velocity 
component normalized with ow (Run #8623, Tl, Component 1). 
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Figure C.2. Probability density function for longitudinal velocity 
component normalized with aW ,(Run #8623, T2, Component 1). 
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Figure C.3. Probability density function for longitudinal velocity 
component normalized with aW (Run #8623, T3, Component 1). 
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Figure C.4. Probability density function for longitudinal velocity 
component normalized with aW (Run #8623, T4, Component 1). 
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Figure C.5. Probability density function for longitudinal velocity 
component normalized with aW (Run #8623, T5, Component 1). 
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Figure C.6. Probability density function for longitudinal velocity 
component normalized with uw (Run #8623, Sl, Component 1). 
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Figure C.7. Probability density function for longitudinal velocity 
component normalized with u w (Run #8623, S2, Component 1). 

X 

238 



4 

Figure C.8. Probability density function for longitudinal velocity 
component normalized with uW (Run #8623, S3, Component 1). 
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Figure C.9. Probability density function for longitudinal velocity 
component normalized with u w (Run #8623, S4, Component 1). 
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Figure C.10. Probability density function for longitudinal velocity 
component normalized with uw (Run #8624, Tl, Component 1). 

X 

241 



0.5 1 

I 

Figure C.ll.. Probability density function for longitudinal velocity 
component normalized with aW (Run #8624, T2, Component 1). 
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Figure C.12. Probability density function for longitudinal velocity 
component normalized with aW (Run #8624, T3, Component 1). 
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Figure C.13. Probability density function for longitudinal velocity 
component normalized with aW (Run #8624, T4, Component 1). 

X 

244 



Figure C.14. Probability density function for longitudinal velocity 
component normalized with uw (Run #8624, T5, Component 1). 
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Figure C.15. Probability density function for longitudinal velocity 
component normalized with aW (Run #8624, Sl, Component 1). 
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Figure C.16. Probability density function for longitudinal velocity 
component normalized with uW (Run #8624, S2, Component 1). 

X 

247 



0.5 1 

Figure C.17. Probability density function for longitudinal velocity 
component normalized with uW (Run #8624, S3, Component 1). 
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Figure C.18. Probability density function for longitudinal velocity 
component normalized with aW (Run #8624, S4, Compone.nt 1). 

X 

249 



0.5 i 

Figure C.19. Probability density function for lateral velocity 
component normalized with aW (Run #8623, Tl, Component 2). 
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Figure C.20. Probability density function-for lateral velocity 
component normalized with aW (Run #8623, T2, Component 2). 
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Figure C.21. Probability density function for lateral velocity 
component normalized with aW (Run #8623, T3, Component 2). 
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Figure C.22. Probability density function for lateral velocity 
component normalized with ow (Run #8623, T4, Component 2). 
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Figure C.23. Probability density function for lateral velocity 
component normalized with uw (Run #8623, T5, Component 2). 
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Figure C.24. Probability density function for lateral velocity 
component normalized with uw (Run #8623,.Sl, Component 2). 
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Figure C.25. Probability density function for lateral velocity 
component normalized with aW (Run #8623, S2, Component 2). 
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Figure C.26. Probability density function for lateral velocity 
component normalized with uw (Run #8623,.S3, Component 2). 
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Figure C.27. Probability density function for lateral velocity 
component normalized with pw (Run #8623, S4, Component 2). 
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Figure C.28. Probability density function for lateral velocity 
component normalized with uw (Run #8624, Tl, Component 2). 
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Figure C.29. Probability density function for lateral velocity 
component normalized with aW (Run #8624, T2, Component 2). 
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Figure C.30. Probability density function for lateral velocity 
component normalized with aW (Run #8624, T3, Component 2). 
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Figure C.31. Probability density function for lateral velocity 
component normalized with uW (Run #8624, T4, Component 2). 
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Figure C.32. Probability density function for lateral velocity 
component normalized with uW (Run #8624, T5, Component 2). 
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Figure C.33. Probability density function for lateral velocity 
component normalized with uw (Run #8624, Sl, Component 2). 
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Figure C.34. Probability density function for lateral velocity 
component normalized with aW (Run #8624, S2, Component 2). 
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Figure C.35. Probability density function for lateral velocity 
component normalized with aW (Run #8624, S3, Component 2). 
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Figure C.36. Probability density function for lateral velocity 
component normalized with aW (Run #8624, S4, Component 2). 
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Figure C.37. Probability density function for vertical velocity 
component normalized with uw (Run #8623, Tl, Component 3). 
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Figure C.38. Probability density function for vertical velocity 
component normalized with uw (Run #8623, T2, Component 3). 
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Figure C.39. Probability density function for vertical velocity 
component normalized with aW (Run #8623, T3, Component 3). 
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Figure C.40. Probability density function for vertical velocity 
component normalized with uw (Run #8623, T4, Component 3). 
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Figure C.41. Probability density function for vertical velocity 
component normalized with uw (Run #8623, T5, Component 3). 
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Figure C.42. Probability density function for vertical velocity 
component normalized with uW (Run #8623, Sl, Component 3). 
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Figure C,43. Probability density function for vertical velocity 
component normalized with aW (Run #8623, S2, Component 3). 
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Figure C.45. Probability density function for vertical velocity 
component normalized with uW (Run #8623, S4, Component 3). 
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Figure C.46. Probability density function for vertical velocity 
component normalized with uw (Run #8624, Tj, Component 3). 
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Figure C.47. Probability density function for vertical velocity 
component normalized with uw (Run #8624, T2, Component 3). 
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Figure C.48. Probability density function for' vertical velocity 
component normalized with (J Wt (Run #8624, T3, Component 3). 
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Figure C.49. Probability density function for vertical 
component normalized with uw (Run #8624, 
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velocity 
T4, Component 3). 
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Figure C.50. Probability density function for vertical velocity 
component normalized with aW (Run #8624; T5, Component 3). 
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Figure C.51. Probability density function for vertical velocity 
component normalized with aW (Run #8624, Sl, Component 3). 
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Figure C.52. Probability density function for vertical velocity 
component normalized with uW (Run #8624, S2, Component 3). 
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Figure C.53. Probability density function for vertical velocity 
component normalized with uw (Run #8624, S3, Component 3). 
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Figure C.54.. Probability density function for vertical velocity 
component normalized with u w (Run #8624, S4, Component 3). 
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APPENDIX D 

LONGITUDINAL SPECTRA 

Spectral data for the longitudinal velocity component at all mea- 

suring stations for Runs 68623 and #8624 are given in this appendix. 

The results are plotted in dimensional form, i.e., 4(f) versus f. 
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Figure D.l. The longitudinal power spectrum (Run #8623, TlLl, 
Component 1). 

287 



I 

* 0 -d iz 

-1 

-2 

1 

-3 

-4 
I I11111 

-3 
I I I lllll( 

-2 
I I I Illll~ 

-1 .’ 
I I I I illl( 

0 
I I I lllll( 

1 12 

log f 

Figure D.2. The longitudinal power spectrum (Run #8623, TlL2, 
Component 1). 
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Figure D.3. The longitudinal power spectrum (Run #8623, TlL3, 
Component 1). 
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Figure D.4. The longitudinal power spectrum (Run #8623, TlL4, 
Component 1). 

290 



-4 
I I1111 

-3 
I I I I llll~ 

-2 
I I I I lllll 

-1 
I I I I lllll 

0 
I I I I llll~ 

1 12 

log f 

Figure D.5. The longitudinal power spectrum (Run #8623, T2L1, 
Component 1). 
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Figure D.6. The longitudinal power spectrum (Run #8623, T2L2, 
Component 1). 
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Figure D.7. The longitudinal power spectrum (Run #8623, T2L3, 
Component 1). 
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Figure D.8. The longitudinal power spectrum (Run #8623, T2L4, 
Component 1). 

294 



4 

3 

2 

1 

-e 
2? 0 
- 

-1 

-2 

-3 

-4T -3 
I 

Figure D.9. The longitudinal power spectrum (Run #8623, T3L1, 
Component 1). 
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Figure D.lO. The longitudinal power spectrum (Run #8623, T3L2, 
Component 1). 

296 



3 
-%I -r 

2 

1 

0 

-1 

-2 

-3 

4 
-4 

I I”” 
-3 

I I I “1”’ 
-2 

I I I I Ill” 
-1 

I I I I Ill” 
0 

I I I I I’ll’ 
1 12 

log f 

Figure D.11. The longitudinal poker spectrum (Run #8623, T3L3, 
Component 1). 

297 



1 

8 

z - 0- 

3 

-1 

3 

-2 

-3 

LI 

-4 

-4 
I 1’1’111’ I I I ml’1 I I I I I”‘~ Illr 

-3 
I I I I I”” 

-2 -1 0 1 ml2 

log f 

Figure D.12. The longitudinal power spectrum (Run #8623, T3L4, 
Component I). 
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Figure D.13. The longitudinal power spectrum (Run #8623, T4L1, 
Component 1). 
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Figure D.14. The longitudinal power spectrum (Run #8623, T4L2, 
Component 1). 
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Figure D.15. The longitudinal power spectrum (Run #8623, T4L3, 
Component 1). 
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Figure D.16. The longitudinal power spectrum (Run #8623, T4L4, 
Component 1). 
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Figure D.17. The longitudinal power spectrum (Run #8623, T5L1, 
Component 1). 
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Figure D.18. The longitudinal power spectrum (Run #8623, T5L2, 
Component 1). 
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. Figure D.19. The longitudinal power spectrum (Run #8623, T5L3, 
Component 1). 
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Figure D.20. The longitudinal power spectrum (Run #8623, T5L4, 
Component 1). 
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Figure D.21. The longitudinal power spectrum (Run #8623, SlLl, 

Component 1). 
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Figure D.22. The longitudinal power spectrum (Run #8623, SlL2, 
Component 1). 
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Figure D.23. The longitudinal power spectrum (Run #8623, SlL3, 
Component 1). 
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Figure D.24. The longitudinal power spectrum (Run #8623, S2L1, 
Component 1). 
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Figure D.25. The longitudinal power spectrum (Run #8623, S2L2, 
Component 7). 
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Figure D.26. The longitudinal power spectrum (Run #8623, S2L3, 
Component 1). 
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Figure D.27. The longitudinal power spectrum (Run #8623, S3L1, 
Component 1). 
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Figure D.28. The longitudinal power spectrum (Run #8623, S3L2, 
Component 1). 
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Figure D.29. The longitudinal power spectrum (Run #8623, S3L3, 
Component 1). 
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Figure D.30. The longitudinal power spectrum (Run #8623, S4L1, 
Component 1). 
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Figure D.31. The longitudinal power spectrum (Run #8623, S4L2, 
Component 1). 
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Figure D.32. The longitudinal power spectrum (Run #8623, S4L3, 
Component 1). 
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Figure D.33. The longitudinal power spectrum (Run #8624, TlLl, 
Component 1). 
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Figure D.34. The longitudinal power spectrum (Run #8624, TlL2, 
Component 1). 

320 



4 

3 
1 

2 

1 

% 

-1 

=I 

-2 

-3 

-4 

-3 
I I I I llll~ I Illlr 

-2 
I I Illlll~ 

-1 
I I I I lllll 

0 
I I I I lllll 

1 12 

log f 

Figure D.35. The longitudinal power spectrum (Run #8624, TlL3, 
Component 1). 
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Figure D.36. The longitudinal power spectrum (Run #8624, TlL4, 
Component 1). 
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Figure D.37. The longitudinal power spectrum (Run #8624, T2L1, 
Component 1). 
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Figure D.38. The longitudinal power spectrum (Run #8624, T2L2, 
Component 1). 

324 



-4 
I Ill1 

-3 
I I-Tmll~ 

-2 
I I I I llll~ 

-1 
I I I I lllll 

0 
I I I I lllll 

1 “I-L 

log f 

Figure D.39. The longitudinal power spectrum (Run #8624, T2L3, 
Component 1). 
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Figure D.40. The longitudinal power spectrum (Run #8624, T2L4, 
Component 1). 
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Figure D.41. The longitudinal power spectrum (Run #8624, T3L1, 
Component 1). 
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Figure D.42. The longitudinal power spectrum (Run #8624, T3L2, 
Component 1). 
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Figure D.43. The longitudinal power spectrum (Run #8624, T3L3, 
Component 1). 
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Figure 0.44. The longitudinal power spectrum (Run,#8624, T3L4, 
Component 1). 
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Figure D.45. The longitudinal power spectrum (Run #8624, T4L1, 
Component 1). 
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Figure D.46. The longitudinal power spectrum (Run #8624, T4L2, 
Component 1). 
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Figure D.47. The longitudinal power spectrum (Run #8624, T4L3, 
Component 1). 
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Figure D.48. The longitudinal power spectrum (Run #8624, T4L4, 
Component 1). 
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Figure D.49. The longitudinal power spectrum (Run #8624, T5L1, 
Component 1). 
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Figure D.50. The longitudinal power spectrum (Run #8624, T5L2, 
Component 1). 
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Figure D.51. The longitudinal power spectrum (Run #8624, T5L3, 
Component 1). 
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Figure D.52. The longitudinal power spectrum (Run #8624, T5L4, 
Component 1). 
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Figure D.53. The longitudinal power spectrum (Run #8624, SlLl, 
Component 1). 

339 



4 

3 

2 

1 

8 

g0 e 

-1 

-2 

-3 

-4 
I I I I Ill’ ““1 

-3 
I “““1’ 

-2 
I I I I Ill” 

-1 ‘0 
I I I lllll’ 

1 ml2 

log f 

Figure D.54. The longitudinal power spectrum (Run #8624, SlL2, 
Component 1). 
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Figure D.55. The longitudinal power spectrum (Run #8624, SlL3, 
Component 1). 
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Figure D.56. The longitudinal power spectrum (Run #8624, S2L1, 
Component 1). 
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Figure D.57. The longitudinal power spectrum (Run #8624, S2L2, 
Component 1). 
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Figure D.58. The longitudinal power spectrum (Run #8624, S2L3, 
Component 1). 
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Figure D.59. The longitudinal power spectrum (Run #8624, S3L1, 
Component 1). 
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Figure D.60. The longitudinal power spectrum (Run #8624, S3L2, 
Component 1). 
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Figure D.61. The longitudinal power spectrum (Run #8624, S3L3, 
Component 1). 
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Figure D.62. The longitudinal power spectrum (Run #8624, S4L1, 
Component 1). 
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Figure D.63. The longitudinal power spectrum (Run #8624, S4L2, 
Component 1). 

349 



mJ 
8 

E 0 F 

-1 

-2 

-3 

-4 

-3 
I “lTrr’( 

-2 
I I I “‘1” “‘1’ 

-1 
I I I I Ill” 

0 
I I ““‘1’ 

1 ml2 

log f 

Figure D.64. The longitudinal power spectrum (Run #8624, S4L3, 
Component 1). 
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APPENDIX E 

VERTICAL VELOCITY CORRELATIONS 

The two-point spatial correlation for the vertical component is 

presented in this appendix. The data represent the vertical correla- 

tion, i.e., correlation between velocities at different levels for a 

given tower. 
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Figure E.3. Two-point vertical space-time correlation relative to 
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Figure E.4. Two-point vertical space-time correlation relative to 
T5L4. 
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Figure E.5. Two-point horizontal space-time correlation relative to 
TlL4. 
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Figure E.6. Two-point horizontal space-time correlation relative to 
T2L4. 
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Figure E.7. Two-point horizontal space-time correlation relative to 
T4L4. 
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